latticegpu.jl/src/Groups/GroupSU2.jl
2024-07-05 14:34:14 +02:00

80 lines
2.3 KiB
Julia

###
### "THE BEER-WARE LICENSE":
### Alberto Ramos wrote this file. As long as you retain this
### notice you can do whatever you want with this stuff. If we meet some
### day, and you think this stuff is worth it, you can buy me a beer in
### return. <alberto.ramos@cern.ch>
###
### file: GroupSU2.jl
### created: Sun Jul 11 17:23:12 2021
###
#
# SU(2) group elements represented trough Cayley-Dickson
# construction
# https://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
using CUDA, Random
SU2(a::T, b::T) where T <: AbstractFloat = SU2{T}(complex(a), complex(b))
"""
inverse(g::T) where T <: Group
Returns the group inverse of `g`.
"""
inverse(b::SU2{T}) where T <: AbstractFloat = SU2{T}(conj(b.t1), -b.t2)
"""
dag(g::T) where T <: Group
Returns the group inverse of `g`.
"""
dag(a::SU2{T}) where T <: AbstractFloat = inverse(a)
norm(a::SU2{T}) where T <: AbstractFloat = sqrt(abs2(a.t1) + abs2(a.t2))
norm2(a::SU2{T}) where T <: AbstractFloat = abs2(a.t1) + abs2(a.t2)
"""
tr(g::T) where T <: Group
Returns the trace of the group element `g`.
"""
tr(g::SU2{T}) where T <: AbstractFloat = complex(2*real(g.t1), 0.0)
"""
dev_one(T) where T <: Group
Returns the distance to the unit group element
"""
dev_one(g::SU2{T}) where T <: AbstractFloat = sqrt(( abs2(g.t1 - one(T)) + abs2(g.t2))/2)
"""
unitarize(a::T) where {T <: Group}
Return a unitarized element of the group.
"""
function unitarize(a::SU2{T}) where T <: AbstractFloat
dr = sqrt(abs2(a.t1) + abs2(a.t2))
if (dr == 0.0)
return SU2{T}(0.0,0.0)
end
return SU2{T}(a.t1/dr,a.t2/dr)
end
Base.:*(a::SU2{T},b::SU2{T}) where T <: AbstractFloat = SU2{T}(a.t1*b.t1-a.t2*conj(b.t2),a.t1*b.t2+a.t2*conj(b.t1))
Base.:/(a::SU2{T},b::SU2{T}) where T <: AbstractFloat = SU2{T}(a.t1*conj(b.t1)+a.t2*conj(b.t2),-a.t1*b.t2+a.t2*b.t1)
Base.:\(a::SU2{T},b::SU2{T}) where T <: AbstractFloat = SU2{T}(conj(a.t1)*b.t1+a.t2*conj(b.t2),conj(a.t1)*b.t2-a.t2*conj(b.t1))
"""
isgroup(g::T) where T <: Group
Returns `true` if `g` is a group element, `false` otherwise.
"""
function isgroup(a::SU2{T}) where T <: AbstractFloat
tol = 1.0E-10
if (abs2(a.t1) + abs2(a.t2) - 1.0 < 1.0E-10)
return true
else
return false
end
end