### ### "THE BEER-WARE LICENSE": ### Alberto Ramos wrote this file. As long as you retain this ### notice you can do whatever you want with this stuff. If we meet some ### day, and you think this stuff is worth it, you can buy me a beer in ### return. ### ### file: YMflow.jl ### created: Sat Sep 25 08:37:14 2021 ### """ struct FlowIntr{N,T} Structure containing info about a particular flow integrator """ struct FlowIntr{N,T} r::T e0::NTuple{N,T} e1::NTuple{N,T} add_zth::Bool c0::T eps::T tol::T eps_ini::T max_eps::T sft_fac::T end # pre-defined integrators """ wfl_euler(::Type{T}, eps::T, tol::T) Euler scheme integrator for the Wilson Flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`. """ wfl_euler(::Type{T}, eps::T, tol::T) where T = FlowIntr{0,T}(one(T),(),(),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10) """ zfl_euler(::Type{T}, eps::T, tol::T) Euler scheme integrator for the Zeuthen flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`. """ zfl_euler(::Type{T}, eps::T, tol::T) where T = FlowIntr{0,T}(one(T),(),(),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10) """ wfl_rk2(::Type{T}, eps::T, tol::T) Second order Runge-Kutta integrator for the Wilson flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`. """ wfl_rk2(::Type{T}, eps::T, tol::T) where T = FlowIntr{1,T}(one(T)/2,(-one(T)/2,),(one(T),),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10) """ zfl_rk2(::Type{T}, eps::T, tol::T) Second order Runge-Kutta integrator for the Zeuthen flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`. """ zfl_rk2(::Type{T}, eps::T, tol::T) where T = FlowIntr{1,T}(one(T)/2,(-one(T)/2,),(one(T),),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10) """ wfl_rk3(::Type{T}, eps::T, tol::T) Third order Runge-Kutta integrator for the Wilson flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`. """ wfl_rk3(::Type{T}, eps::T, tol::T) where T = FlowIntr{2,T}(one(T)/4,(-17/36,-one(T)),(8/9,3/4),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10) """ Zfl_rk3(::Type{T}, eps::T, tol::T) Third order Runge-Kutta integrator for the Zeuthen flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`. """ zfl_rk3(::Type{T}, eps::T, tol::T) where T = FlowIntr{2,T}(one(T)/4,(-17/36,-one(T)),(8/9,3/4),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10) function Base.show(io::IO, int::FlowIntr{N,T}) where {N,T} if (abs(int.c0-1) < 1.0E-10) println(io, "WILSON flow integrator") elseif (abs(int.c0-5/3) < 1.0E-10) && int.add_zth println(io, "ZEUTHEN flow integrator") elseif (abs(int.c0-5/3) < 1.0E-10) && !int.add_zth println(io, "SYMANZIK flow integrator") else println(io, "CUSTOM flow integrator") if int.add_zth println(io, " - ", int.c0, " (with zeuthen term)") else println(io, " - ", int.c0) end end if N == 0 println(io, " * Euler schem3") elseif N == 1 println(io, " * One stage scheme. Coefficients3") println(io, " stg 1: ", int.e0[1], " ", int.e1[1]) elseif N == 2 println(io, " * Two stage scheme. Coefficients:") println(io, " stg 1: ", int.e0[1], " ", int.e1[1]) println(io, " stg 2: ", int.e0[2], " ", int.e1[2]) end println(io, " * Fixed step size parameters: eps = ", int.eps) println(io, " * Adaptive step size parameters: tol = ", int.tol) println(io, " - max eps: ", int.max_eps) println(io, " - initial eps: ", int.eps_ini) println(io, " - safety scale: ", int.sft_fac) return nothing end """ function add_zth_term(ymws::YMworkspace, U, lp) Assuming that the gauge improved (LW) force is in ymws.frc1, this routine adds the "Zeuthen term" and returns the full zeuthen force in ymws.frc1 """ function add_zth_term(ymws::YMworkspace, U, lp) CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_zth!(ymws.frc1,ymws.frc2,U,lp) end ymws.frc1 .= ymws.frc2 return nothing end function krnl_add_zth!(frc, frc2::AbstractArray{TA}, U::AbstractArray{TG}, lp::SpaceParm{N,M,B,D}) where {TA,TG,N,M,B,D} @inbounds begin b = Int64(CUDA.threadIdx().x) r = Int64(CUDA.blockIdx().x) it = point_time((b, r), lp) SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) OBC = (B == BC_OPEN) @inbounds for id in 1:N bu, ru = up((b,r), id, lp) bd, rd = dw((b,r), id, lp) X = frc[bu,id,ru] Y = frc[bd,id,rd] Ud = U[bd,id,rd] if SFBC if (it > 1) && (it < lp.iL[end]) frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + projalg(U[b,id,r]*X/U[b,id,r])) elseif (it == lp.iL[end]) && (id < N) frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + projalg(U[b,id,r]*X/U[b,id,r])) end end if OBC if (it > 1) && (it < lp.iL[end]) frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + projalg(U[b,id,r]*X/U[b,id,r])) elseif ((it == lp.iL[end]) || (it == 1)) && (id < N) frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + projalg(U[b,id,r]*X/U[b,id,r])) end else frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + projalg(U[b,id,r]*X/U[b,id,r])) end end end return nothing end """ function flw(U, int::FlowIntr{NI,T}, ns::Int64, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) Integrates the flow equations with the integration scheme defined by `int` performing `ns` steps with fixed step size. The configuration `U` is overwritten. """ function flw(U, int::FlowIntr{NI,T}, ns::Int64, eps, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T} @timeit "Integrating flow equations" begin for i in 1:ns force_gauge(ymws, U, int.c0, 1, gp, lp) if int.add_zth add_zth_term(ymws::YMworkspace, U, lp) end ymws.mom .= ymws.frc1 U .= expm.(U, ymws.mom, 2*eps*int.r) for k in 1:NI force_gauge(ymws, U, int.c0, 1, gp, lp) if int.add_zth add_zth_term(ymws::YMworkspace, U, lp) end ymws.mom .= int.e0[k].*ymws.mom .+ int.e1[k].*ymws.frc1 U .= expm.(U, ymws.mom, 2*eps) end end end return nothing end flw(U, int::FlowIntr{NI,T}, ns::Int64, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T} = flw(U, int, ns, int.eps, gp, lp, ymws) ## # Adaptive step size integrators ## """ function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) Integrates the flow equations with the integration scheme defined by `int` using the adaptive step size integrator up to `tend` with the tolerance defined in `int`. The configuration `U` is overwritten. """ function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T} eps = epsini dt = tend nstp = 0 eps_all = Vector{T}(undef,0) while true ns = convert(Int64, floor(dt/eps)) if ns > 10 flw(U, int, 9, eps, gp, lp, ymws) ymws.U1 .= U flw(U, int, 1, eps, gp, lp, ymws) flw(ymws.U1, int, 2, eps/2, gp, lp, ymws) dt = dt - 10*eps nstp = nstp + 10 push!(eps_all,ntuple(i->eps,10)...) # adjust step size ymws.U1 .= ymws.U1 ./ U maxd = CUDA.mapreduce(dev_one, max, ymws.U1, init=zero(tend)) eps = min(int.max_eps, 2*eps, int.sft_fac*eps*(int.tol/maxd)^(one(tend)/3)) else flw(U, int, ns, eps, gp, lp, ymws) dt = dt - ns*eps push!(eps_all,ntuple(i->eps,ns)...) push!(eps_all,dt) flw(U, int, 1, dt, gp, lp, ymws) dt = zero(tend) nstp = nstp + ns + 1 end if dt == zero(tend) break end end return nstp, eps_all end flw_adapt(U, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T} = flw_adapt(U, int, tend, int.eps_ini, gp, lp, ymws) ## # Observables ## """ function Eoft_plaq([Eslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) Measure the action density `E(t)` using the plaquette discretization. If the argument `Eslc` is given the contribution for each Euclidean time slice and plane are returned. """ function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws::YMworkspace) where {T,G,NN,N,M,B,D} @timeit "E(t) plaquette measurement" begin ztw = ztwist(gp, lp) SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) OBC = (B == BC_OPEN) tp = ntuple(i->i, N-1) V3 = prod(lp.iL[1:end-1]) fill!(Eslc,zero(T)) Etmp = zeros(T,lp.iL[end]) for ipl in 1:M fill!(Etmp, zero(T)) CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_plaq_pln!(ymws.cm, U, gp.Ubnd, ztw[ipl], ipl, lp) end Etmp .= (gp.ng .- reshape(Array(CUDA.mapreduce(real, +, ymws.cm;dims=tp)),lp.iL[end]) ./ V3 ) if ipl < N for it in 2:lp.iL[end] Eslc[it,ipl] = Etmp[it] + Etmp[it-1] end if !SFBC Eslc[1,ipl] = Etmp[1] + Etmp[end] end if OBC ## Check normalization of timelike boundary plaquettes Eslc[end,ipl] = Etmp[end-1] Eslc[1,ipl] = Etmp[1] end else for it in 1:lp.iL[end] Eslc[it,ipl] = 2*Etmp[it] end end end end return sum(Eslc)/lp.iL[end] end Eoft_plaq(U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws::YMworkspace) where {T,G,NN,N,M,B,D} = Eoft_plaq(zeros(T,lp.iL[end],M), U, gp, lp, ymws) function krnl_plaq_pln!(plx, U::AbstractArray{T}, Ubnd, ztw, ipl, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} @inbounds begin b = Int64(CUDA.threadIdx().x) r = Int64(CUDA.blockIdx().x) I = point_coord((b,r), lp) id1, id2 = lp.plidx[ipl] SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI)) && (id1 == N) TWP = ((I[id1]==1)&&(I[id2]==1)) bu1, ru1 = up((b, r), id1, lp) bu2, ru2 = up((b, r), id2, lp) if SFBC && (ru1 != r) gt = Ubnd[id2] else gt = U[bu1,id2,ru1] end if TWP plx[I] = ztw*tr(U[b,id1,r]*gt / (U[b,id2,r]*U[bu2,id1,ru2])) else plx[I] = tr(U[b,id1,r]*gt / (U[b,id2,r]*U[bu2,id1,ru2])) end end return nothing end """ Qtop([Qslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) Measure the topological charge `Q` of the configuration `U` using the clover definition of the field strength tensor. If the argument `Qslc` is present the contributions for each Euclidean time slice are returned. Only works in 4D. """ function Qtop(Qslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace) where {M,B,D} @timeit "Qtop measurement" begin ztw = ztwist(gp, lp) tp = (1,2,3) fill!(ymws.rm, zero(eltype(ymws.rm))) CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 1,5, ztw[1], ztw[5], lp) end CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp) end CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 2,4, ztw[2], ztw[4], lp) end CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, +, ymws.frc1, ymws.frc2, lp) end CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 3,6, ztw[3], ztw[6], lp) end CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp) end Qslc .= reshape(Array(CUDA.reduce(+, ymws.rm; dims=tp)),lp.iL[end])./(32*pi^2) end return sum(Qslc) end Qtop(U, gp::GaugeParm, lp::SpaceParm{4,M,D}, ymws::YMworkspace{T}) where {T,M,D} = Qtop(zeros(T,lp.iL[end]), U, gp, lp, ymws) """ function Eoft_clover([Eslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) Measure the action density `E(t)` using the clover discretization. If the argument `Eslc` is given the contribution for each Euclidean time slice and plane are returned. """ function Eoft_clover(Eslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace{T}) where {T,M,B,D} function acum(ipl1, ipl2, Etmp) tp = (1,2,3) V3 = prod(lp.iL[1:end-1]) CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_et!(ymws.rm, ymws.frc1, lp) end Etmp .= reshape(Array(CUDA.reduce(+, ymws.rm;dims=tp)),lp.iL[end])/V3 for it in 1:lp.iL[end] Eslc[it,ipl1] = Etmp[it]/8 end CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_et!(ymws.rm, ymws.frc2, lp) end Etmp .= reshape(Array(CUDA.reduce(+, ymws.rm;dims=tp)),lp.iL[end])/V3 for it in 1:lp.iL[end] Eslc[it,ipl2] = Etmp[it]/8 end return nothing end @timeit "E(t) clover measurement" begin ztw = ztwist(gp, lp) fill!(Eslc,zero(T)) Etmp = zeros(T,lp.iL[end]) CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 1,2, ztw[1], ztw[2], lp) end acum(1,2,Etmp) CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 3,4, ztw[3], ztw[4], lp) end acum(3,4,Etmp) CUDA.@sync begin CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 5,6, ztw[5], ztw[6], lp) end acum(5,6,Etmp) end return sum(Eslc)/lp.iL[end] end Eoft_clover(U, gp::GaugeParm, lp::SpaceParm{N,M,B,D}, ymws::YMworkspace{T}) where {T,N,M,B,D} = Eoft_clover(zeros(T,lp.iL[end],M), U, gp, lp, ymws) function krnl_add_et!(rm, frc1, lp::SpaceParm{4,M,B,D}) where {M,B,D} @inbounds begin b = Int64(CUDA.threadIdx().x) r = Int64(CUDA.blockIdx().x) X1 = (frc1[b,1,r]+frc1[b,2,r]+frc1[b,3,r]+frc1[b,4,r]) I = point_coord((b,r), lp) rm[I] = dot(X1,X1) end return nothing end function krnl_add_qd!(rm, op, frc1, frc2, lp::SpaceParm{4,M,B,D}) where {M,B,D} @inbounds begin b = Int64(CUDA.threadIdx().x) r = Int64(CUDA.blockIdx().x) I = point_coord((b,r), lp) rm[I] += op(dot( (frc1[b,1,r]+frc1[b,2,r]+frc1[b,3,r]+frc1[b,4,r]), (frc2[b,1,r]+frc2[b,2,r]+frc2[b,3,r]+frc2[b,4,r]) ) ) end return nothing end function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T}, Ubnd, ipl1, ipl2, ztw1, ztw2, lp::SpaceParm{4,M,B,D}) where {TA,T,M,B,D} @inbounds begin b = Int64(CUDA.threadIdx().x) r = Int64(CUDA.blockIdx().x) I = point_coord((b,r), lp) it = I[4] #First plane id1, id2 = lp.plidx[ipl1] SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4) OBC = ((B == BC_OPEN) && (id1 == 4)) TWP = ((I[id1]==1)&&(I[id2]==1)) bu1, ru1 = up((b, r), id1, lp) bu2, ru2 = up((b, r), id2, lp) bd, rd = up((bu1, ru1), id2, lp) if SFBC && (it == lp.iL[end]) gt1 = Ubnd[id2] else gt1 = U[bu1,id2,ru1] end l1 = gt1/U[bu2,id1,ru2] l2 = U[b,id2,r]\U[b,id1,r] if SFBC && (it == lp.iL[end]) frc1[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r]) frc1[bu1,2,ru1] = zero(TA) frc1[bd,3,rd] = zero(TA) frc1[bu2,4,ru2] = projalg(l2*l1) elseif OBC && (it == lp.iL[end]) frc1[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r]) frc1[bu1,2,ru1] = zero(TA) frc1[bd,3,rd] = zero(TA) frc1[bu2,4,ru2] = projalg(l2*l1) else if TWP frc1[b,1,r] = projalg(ztw1, U[b,id1,r]*l1/U[b,id2,r]) frc1[bu1,2,ru1] = projalg(ztw1, l1*l2) frc1[bd,3,rd] = projalg(ztw1, U[bu2,id1,ru2]\(l2*gt1)) frc1[bu2,4,ru2] = projalg(ztw1, l2*l1) else frc1[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r]) frc1[bu1,2,ru1] = projalg(l1*l2) frc1[bd,3,rd] = projalg(U[bu2,id1,ru2]\(l2*gt1)) frc1[bu2,4,ru2] = projalg(l2*l1) end end # Second plane id1, id2 = lp.plidx[ipl2] SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4) OBC = ((B == BC_OPEN) && (id1 == 4)) TWP = ((I[id1]==1)&&(I[id2]==1)) bu1, ru1 = up((b, r), id1, lp) bu2, ru2 = up((b, r), id2, lp) bd, rd = up((bu1, ru1), id2, lp) if SFBC && (it == lp.iL[end]) gt1 = Ubnd[id2] else gt1 = U[bu1,id2,ru1] end l1 = gt1/U[bu2,id1,ru2] l2 = U[b,id2,r]\U[b,id1,r] if SFBC && (it == lp.iL[end]) frc2[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r]) frc2[bu1,2,ru1] = zero(TA) frc2[bd,3,rd] = zero(TA) frc2[bu2,4,ru2] = projalg(l2*l1) elseif OBC && (it == lp.iL[end]) frc1[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r]) frc1[bu1,2,ru1] = zero(TA) frc1[bd,3,rd] = zero(TA) frc1[bu2,4,ru2] = projalg(l2*l1) else if TWP frc2[b,1,r] = projalg(ztw2, U[b,id1,r]*l1/U[b,id2,r]) frc2[bu1,2,ru1] = projalg(ztw2, l1*l2) frc2[bd,3,rd] = projalg(ztw2, U[bu2,id1,ru2]\(l2*gt1)) frc2[bu2,4,ru2] = projalg(ztw2, l2*l1) else frc2[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r]) frc2[bu1,2,ru1] = projalg(l1*l2) frc2[bd,3,rd] = projalg(U[bu2,id1,ru2]\(l2*gt1)) frc2[bu2,4,ru2] = projalg(l2*l1) end end end return nothing end