diff --git a/test/dirac/test_fp_fa.jl b/test/dirac/test_fp_fa.jl new file mode 100644 index 0000000..ee931ae --- /dev/null +++ b/test/dirac/test_fp_fa.jl @@ -0,0 +1,125 @@ +using LatticeGPU +using CUDA +using TimerOutputs + + +@timeit "fA_fP test" begin + + +function fP_test(;theta = (0.5,0.7,1.0,0.0), m = 1.3, size = (8,8,8,16),prec = 1.0e-16) + +@timeit "fP inversion (x12)" begin + +lp = SpaceParm{4}(size,(4,4,4,4),1,(0,0,0,0,0,0)); +exptheta = exp.(im.*theta./lp.iL); + +dpar = DiracParam{Float64}(SU3fund,m,0.0,exptheta,1.0); +dws = DiracWorkspace(SU3fund{Float64},Float64,lp); + +U = fill!(vector_field(SU3{Float64},lp),one(SU3{Float64})); +psi = scalar_field(Spinor{4,SU3fund{Float64}},lp); + +res = zeros(lp.iL[4]) + +for s in 1:4 for c in 1:3 + bndpropagator!(psi,U,dpar,dws,lp,1000,prec,c,s); + + for t in 1:lp.iL[4] + #for i in 1:lp.iL[1] for j in 1:lp.iL[2] for k in 1:lp.iL[3] + i=abs(rand(Int))%lp.iL[1] +1;j=abs(rand(Int))%lp.iL[2] +1;k=abs(rand(Int))%lp.iL[3] +1; + CUDA.@allowscalar (res[t] += norm2(psi[point_index(CartesianIndex{lp.ndim}((i,j,k,t)),lp)...])/2) + #end end end + #res[t] = res[t]/(lp.iL[1]*lp.iL[2]*lp.iL[3]) + + end + +end end + +end + +@timeit "fP analitical solution" begin + + #THEORETICAL SOLUTION: hep-lat/9606016 eq (2.33) + + res_th = zeros(lp.iL[4]) + + pp3 = ntuple(i -> theta[i]/lp.iL[i],3) + omega = 2 * asinh(0.5* sqrt(( sum((sin.(pp3)).^2) + (m + 2*(sum((sin.(pp3./2)).^2) ))^2) / (1+m+2*(sum((sin.(pp3./2)).^2) )) ) ) + pp = (-im*omega,pp3...) + Mpp = m + 2* sum((sin.(pp./2)).^2) + Rpp = Mpp*(1-exp(-2*omega*lp.iL[4])) + sinh(omega) * (1+exp(-2*omega*lp.iL[4])) + + for i in 2:lp.iL[4] + res_th[i] = (2*3*sinh(omega)/(Rpp^2)) * ( (Mpp + sinh(omega))*exp(-2*omega*(i-1)) - (Mpp - sinh(omega))*exp(-2*omega*(2*lp.iL[4]- (i - 1))) ) + end + +end + return sum(abs.(res-res_th)) + +end + +function fA_test(;theta = (0.5,0.7,1.0,0.0), m = 1.3, size = (8,8,8,16),prec = 1.0e-16) + +@timeit "fA inversion (x12)" begin + + lp = SpaceParm{4}(size,(4,4,4,4),1,(0,0,0,0,0,0)); + exptheta = exp.(im.*theta./lp.iL); + + dpar = DiracParam{Float64}(SU3fund,m,0.0,exptheta,1.0); + dws = DiracWorkspace(SU3fund{Float64},Float64,lp); + + U = fill!(vector_field(SU3{Float64},lp),one(SU3{Float64})); + psi = scalar_field(Spinor{4,SU3fund{Float64}},lp); + + res = im*zeros(lp.iL[4]) + + for s in 1:4 for c in 1:3 + bndpropagator!(psi,U,dpar,dws,lp,1000,prec,c,s); + + for t in 1:lp.iL[4] + #for i in 1:lp.iL[1] for j in 1:lp.iL[2] for k in 1:lp.iL[3] + i=abs(rand(Int))%lp.iL[1] +1;j=abs(rand(Int))%lp.iL[2] +1;k=abs(rand(Int))%lp.iL[3] +1; + CUDA.@allowscalar (res[t] += -dot(psi[point_index(CartesianIndex{lp.ndim}((i,j,k,t)),lp)...],dmul(Gamma{4},psi[point_index(CartesianIndex{lp.ndim}((i,j,k,t)),lp)...]))/2) + #end end end + #res[t] = res[t]/(lp.iL[1]*lp.iL[2]*lp.iL[3]) + + end + + end end + +end + #THEORETICAL SOLUTION: hep-lat/9606016 eq (2.32) + +@timeit "fA analitical solution" begin + res_th = zeros(lp.iL[4]) + + pp3 = ntuple(i -> theta[i]/lp.iL[i],3) + omega = 2 * asinh(0.5* sqrt(( sum((sin.(pp3)).^2) + (m + 2*(sum((sin.(pp3./2)).^2) ))^2) / (1+m+2*(sum((sin.(pp3./2)).^2) )) ) ) + pp = (-im*omega,pp3...) + Mpp = m + 2* sum((sin.(pp./2)).^2) + Rpp = Mpp*(1-exp(-2*omega*lp.iL[4])) + sinh(omega) * (1+exp(-2*omega*lp.iL[4])) + + for i in 2:lp.iL[4] + res_th[i] = (6/(Rpp^2)) * ( 2*(Mpp - sinh(omega))*(Mpp + sinh(omega))*exp(-2*omega*lp.iL[4]) + - Mpp*((Mpp + sinh(omega))*exp(-2*omega*(i-1)) + (Mpp - sinh(omega))*exp(-2*omega*(2*lp.iL[4]- (i - 1))))) + end + +end + + return sum(abs.(res-res_th)) + +end + + +difA = fA_test(); +difP = fP_test(); + +if difA > 1.0e-15 + error("fA test failed with error ", difA) +elseif difP > 1.0e-15 + error("fP test failed with error ", difP) +else + print("fA & fP tests passed with errors: ", difA," and ",difP,"!\n") +end + +end