OBC Branch Merge

This commit is contained in:
Fernando P.Panadero 2024-06-20 16:32:40 +02:00
parent d026a17b44
commit bc06079664
7 changed files with 1726 additions and 808 deletions

View file

@ -105,500 +105,6 @@ struct DiracWorkspace{T}
end end
export DiracWorkspace, DiracParam
"""
function Csw!(dws, U, gp, lp::SpaceParm)
Computes the clover and stores it in dws.csw.
"""
function Csw!(dws, U, gp, lp::SpaceParm{4,6,B,D}) where {B,D}
@timeit "Csw computation" begin
for i in 1:Int(lp.npls)
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_csw!(dws.csw, U, gp.Ubnd, i, lp)
end
end
end
return nothing
end
function krnl_csw!(csw::AbstractArray{T}, U, Ubnd, ipl, lp::SpaceParm{4,M,B,D}) where {T,M,B,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[4]
id1, id2 = lp.plidx[ipl]
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4)
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
bd1, rd1 = dw((b, r), id1, lp)
bd2, rd2 = dw((b, r), id2, lp)
bdd, rdd = dw((bd1, rd1), id2, lp)
bud, rud = dw((bu1, ru1), id2, lp)
bdu, rdu = up((bd1, rd1), id2, lp)
if SFBC && (it == lp.iL[end])
gt1 = Ubnd[id2]
gt2 = Ubnd[id2]
else
gt1 = U[bu1,id2,ru1]
gt2 = U[bud,id2,rud]
end
M1 = U[b,id1,r]*gt1/(U[b,id2,r]*U[bu2,id1,ru2])
M2 = (U[bd2,id2,rd2]\(U[bd2,id1,rd2]*gt2))/U[b,id1,r]
M3 = (U[bdd,id2,rdd]*U[bd1,id1,rd1])\(U[bdd,id1,rdd]*U[bd2,id2,rd2])
M4 = (U[b,id2,r]/(U[bd1,id2,rd1]*U[bdu,id1,rdu]))*U[bd1,id1,rd1]
if !(SFBC && (it == 1))
csw[b,ipl,r] = 0.125*(antsym(M1)+antsym(M2)+antsym(M3)+antsym(M4))
end
end
return nothing
end
"""
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes the Dirac operator (with the Wilson term) `\`\``D_w``\`\` with gauge field U and parameters `dpar` of the field `si` and stores it in `so`.
If `dpar.csw` is different from zero, the clover term should be stored in `dws.csw` via the Csw! function and is automatically included in the operator.
"""
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D}
if abs(dpar.csw) > 1.0E-10
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp)
end
end
else
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, lp)
end
end
end
return nothing
end
function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, lp::SpaceParm{4,6,B,D}) where {B,D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]+ im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
end
return nothing
end
function krnl_Dw!(so, U, si, m0, tm, th, lp::SpaceParm{4,6,B,D}) where {B,D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r])
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
end
return nothing
end
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
else
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
end
return nothing
end
function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
return nothing
end
function krnl_Dw!(so, U, si, m0, tm, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r])
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
return nothing
end
"""
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes \`\` \\gamma_5 \`\` times the Dirac operator (with the Wilson term) with gauge field U and parameters `dpar` of the field `si` and stores it in `so`.
If `dpar.csw` is different from zero, the clover term should be stored in `dws.csw` via the Csw! function and is automatically included in the operator.
"""
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D}
if abs(dpar.csw) > 1.0E-10
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp)
end
end
else
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, lp)
end
end
end
return nothing
end
function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, lp::SpaceParm{4,6,B,D}) where {B,D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r]
end
return nothing
end
function krnl_g5Dw!(so, U, si, m0, tm, th, lp::SpaceParm{4,6,B,D}) where {B,D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r]
end
return nothing
end
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
else
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
end
return nothing
end
function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r]
return nothing
end
function krnl_g5Dw!(so, U, si, m0, tm, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r]
return nothing
end
"""
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Applies the operator \`\` \\gamma_5 D_w \`\` twice to `si` and stores the result in `so`. This is equivalent to appling the operator \`\` D_w^\\dagger D_w \`\`
The Dirac operator is the same as in the functions `Dw!` and `g5Dw!`
"""
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
SF_bndfix!(dws.st,lp)
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
SF_bndfix!(so,lp)
end
else
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
SF_bndfix!(dws.st,lp)
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, dpar.ct, lp)
end
end
SF_bndfix!(so,lp)
end
end
return nothing
end
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D}
if abs(dpar.csw) > 1.0E-10
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp)
end
end
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, lp)
end
end
end
else
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, lp)
end
end
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, lp)
end
end
end
end
return nothing
end
""" """
function mtwmdpar(dpar::DiracParam) function mtwmdpar(dpar::DiracParam)
@ -610,108 +116,19 @@ function mtwmdpar(dpar::DiracParam{P,R}) where {P,R}
end end
""" export DiracWorkspace, DiracParam, mtwmdpar
SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}})
Sets all the values of `sp` in the first time slice to zero. include("Diracfields.jl")
""" export SF_bndfix!, Csw!, pfrandomize!
function SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
@timeit "SF boundary fix" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_sfbndfix!(sp, lp)
end
end
return nothing
end
function krnl_sfbndfix!(sp,lp::SpaceParm)
b=Int64(CUDA.threadIdx().x)
r=Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) == 1)
sp[b,r] = 0.0*sp[b,r]
end
return nothing
end
"""
function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund / SU2fund {T}}}, lp::SpaceParm, t::Int64 = 0)
Randomizes the SU2fund / SU3fund fermion field. If the argument t is present, it only randomizes that time-slice.
"""
function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund{T}}}, lp::SpaceParm, t::Int64 = 0) where {T}
@timeit "Randomize pseudofermion field" begin
p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4) # complex generation not suported for Julia 1.5.4
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su3!(f,p,lp,t)
end
end
return nothing
end
function krnl_assign_pf_su3!(f::AbstractArray, p , lp::SpaceParm, t::Int64)
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
if t == 0
f[b,r] = Spinor(map(x->SU3fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2],
x[b,3,r,1] + im* x[b,3,r,2]),p))
elseif point_time((b,r),lp) == t
f[b,r] = Spinor(map(x->SU3fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2],
x[b,3,r,1] + im* x[b,3,r,2]),p))
end
end
return nothing
end
function pfrandomize!(f::AbstractArray{Spinor{4, SU2fund{T}}},lp::SpaceParm, t::Int64=0) where {T}
@timeit "Randomize pseudofermion field" begin
p = ntuple(i->CUDA.randn(T, lp.bsz, 2, lp.rsz,2),4) # complex generation not suported for Julia 1.5.4
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su2!(f,p,lp,t)
end
end
return nothing
end
function krnl_assign_pf_su2!(f::AbstractArray, p , lp::SpaceParm, t::Int64)
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
if t == 0
f[b,r] = Spinor(map(x->SU2fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2]),p))
elseif point_time((b,r),lp) == t
f[b,r] = Spinor(map(x->SU2fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2]),p))
end
end
return nothing
end
export Dw!, g5Dw!, DwdagDw!, SF_bndfix!, Csw!, pfrandomize!, mtwmdpar
include("Diracoper.jl")
export Dw!, g5Dw!, DwdagDw!
include("DiracIO.jl") include("DiracIO.jl")
export read_prop, save_prop, read_dpar export read_prop, save_prop, read_dpar
include("Diracflow.jl") include("Diracflow.jl")
export Dslash_sq!, flw, backflow export Nablanabla!, Dslash_sq!, flw, backflow
end end

211
src/Dirac/Diracfields.jl Normal file
View file

@ -0,0 +1,211 @@
"""
function Csw!(dws, U, gp, lp::SpaceParm)
Computes the clover and stores it in dws.csw.
"""
function Csw!(dws, U, gp, lp::SpaceParm{4,6,B,D}) where {B,D}
@timeit "Csw computation" begin
for i in 1:Int(lp.npls)
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_csw!(dws.csw, U, gp.Ubnd, i, lp)
end
end
end
return nothing
end
function krnl_csw!(csw::AbstractArray{T}, U, Ubnd, ipl, lp::SpaceParm{4,M,B,D}) where {T,M,B,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[4]
id1, id2 = lp.plidx[ipl]
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4)
OBC = (B == BC_OPEN) && ((it == 1) || (it == lp.iL[end]))
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
bd1, rd1 = dw((b, r), id1, lp)
bd2, rd2 = dw((b, r), id2, lp)
bdd, rdd = dw((bd1, rd1), id2, lp)
bud, rud = dw((bu1, ru1), id2, lp)
bdu, rdu = up((bd1, rd1), id2, lp)
if SFBC && (it == lp.iL[end])
gt1 = Ubnd[id2]
gt2 = Ubnd[id2]
else
gt1 = U[bu1,id2,ru1]
gt2 = U[bud,id2,rud]
end
M1 = U[b,id1,r]*gt1/(U[b,id2,r]*U[bu2,id1,ru2])
M2 = (U[bd2,id2,rd2]\(U[bd2,id1,rd2]*gt2))/U[b,id1,r]
M3 = (U[bdd,id2,rdd]*U[bd1,id1,rd1])\(U[bdd,id1,rdd]*U[bd2,id2,rd2])
M4 = (U[b,id2,r]/(U[bd1,id2,rd1]*U[bdu,id1,rdu]))*U[bd1,id1,rd1]
if !(SFBC && (it == 1)) && !OBC
csw[b,ipl,r] = 0.125*(antsym(M1)+antsym(M2)+antsym(M3)+antsym(M4))
end
end
return nothing
end
"""
SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}})
Sets all the values of `sp` in the first time slice to zero.
"""
function SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
@timeit "SF boundary fix" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_sfbndfix!(sp, lp)
end
end
return nothing
end
function krnl_sfbndfix!(sp,lp::SpaceParm)
b=Int64(CUDA.threadIdx().x)
r=Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) == 1)
sp[b,r] = 0.0*sp[b,r]
end
return nothing
end
"""
SF_bndfix!(sp, lp::SpaceParm{4,6,BC_OPEN,D})
Sets all the values of `sp` in the first and last time slice to zero.
"""
function SF_bndfix!(sp, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
@timeit "SF boundary fix" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_opbndfix!(sp, lp)
end
end
return nothing
end
function krnl_opbndfix!(sp,lp::SpaceParm)
b=Int64(CUDA.threadIdx().x)
r=Int64(CUDA.blockIdx().x)
if ((point_time((b,r),lp) == 1) || (point_time((b,r),lp) == lp.iL[end]))
sp[b,r] = 0.0*sp[b,r]
end
return nothing
end
"""
function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund / SU2fund {T}}}, lp::SpaceParm, t::Int64 = 0)
Randomizes the SU2fund / SU3fund fermion field. If the argument t is present, it only randomizes that time-slice.
"""
function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund{T}}}, lp::SpaceParm{4,6,BC_PERIODIC,D}, t::Int64 = 0) where {T,D}
@timeit "Randomize pseudofermion field" begin
p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4)./sqrt(2) # complex generation not suported for Julia 1.5.4
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su3!(f,p,lp,t)
end
end
return nothing
end
function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund{T}}}, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D},SpaceParm{4,6,BC_OPEN,D}}, t::Int64 = 0) where {T,D}
@timeit "Randomize pseudofermion field" begin
p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4)./sqrt(2) # complex generation not suported for Julia 1.5.4
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su3!(f,p,lp,t)
end
end
SF_bndfix!(f,lp)
return nothing
end
function krnl_assign_pf_su3!(f::AbstractArray, p , lp::SpaceParm, t::Int64)
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
if t == 0
f[b,r] = Spinor(map(x->SU3fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2],
x[b,3,r,1] + im* x[b,3,r,2]),p))
elseif point_time((b,r),lp) == t
f[b,r] = Spinor(map(x->SU3fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2],
x[b,3,r,1] + im* x[b,3,r,2]),p))
end
end
return nothing
end
function pfrandomize!(f::AbstractArray{Spinor{4, SU2fund{T}}}, lp::SpaceParm{4,6,BC_PERIODIC,D}, t::Int64 = 0) where {T,D}
@timeit "Randomize pseudofermion field" begin
p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4)./sqrt(2) # complex generation not suported for Julia 1.5.4
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su2!(f,p,lp,t)
end
end
return nothing
end
function pfrandomize!(f::AbstractArray{Spinor{4, SU2fund{T}}}, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D},SpaceParm{4,6,BC_OPEN,D}}, t::Int64 = 0) where {T,D}
@timeit "Randomize pseudofermion field" begin
p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4)./sqrt(2) # complex generation not suported for Julia 1.5.4
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su2!(f,p,lp,t)
end
end
SF_bndfix!(f,lp)
return nothing
end
function krnl_assign_pf_su2!(f::AbstractArray, p , lp::SpaceParm, t::Int64)
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
if t == 0
f[b,r] = Spinor(map(x->SU2fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2]),p))
elseif point_time((b,r),lp) == t
f[b,r] = Spinor(map(x->SU2fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2]),p))
end
end
return nothing
end

View file

@ -154,83 +154,6 @@ function bflw_step!(psi, U, eps, int::FlowIntr, gp::GaugeParm, dpar::DiracParam
return nothing return nothing
end end
"""
function Nablanabla!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes /`/` \\nabla^* \\nabla /`/` `si` and stores it in `si`.
"""
function Nablanabla!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D}
@timeit "Laplacian" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Nablanabla(so, U, si, dpar.th, lp)
end
end
return nothing
end
function krnl_Nablanabla(so, U, si, th, lp::SpaceParm{4,6,B,D}) where {B,D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
@inbounds begin
so[b,r] = -4*si[b,r]
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
so[b,r] += 0.5*( th[1] * (U[b,1,r]*si[bu1,ru1]) +conj(th[1]) * (U[bd1,1,rd1]\si[bd1,rd1]) +
th[2] * (U[b,2,r]*si[bu2,ru2]) +conj(th[2]) * (U[bd2,2,rd2]\si[bd2,rd2]) +
th[3] * (U[b,3,r]*si[bu3,ru3]) +conj(th[3]) * (U[bd3,3,rd3]\si[bd3,rd3]) +
th[4] * (U[b,4,r]*si[bu4,ru4]) +conj(th[4]) * (U[bd4,4,rd4]\si[bd4,rd4]) )
end
return nothing
end
function krnl_Nablanabla(so, U, si, th, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
@inbounds begin
if (point_time((b,r),lp) != 1)
so[b,r] = -4*si[b,r]
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
so[b,r] += 0.5*( th[1] * (U[b,1,r]*si[bu1,ru1]) +conj(th[1]) * (U[bd1,1,rd1]\si[bd1,rd1]) +
th[2] * (U[b,2,r]*si[bu2,ru2]) +conj(th[2]) * (U[bd2,2,rd2]\si[bd2,rd2]) +
th[3] * (U[b,3,r]*si[bu3,ru3]) +conj(th[3]) * (U[bd3,3,rd3]\si[bd3,rd3]) +
th[4] * (U[b,4,r]*si[bu4,ru4]) +conj(th[4]) * (U[bd4,4,rd4]\si[bd4,rd4]) )
end
end
return nothing
end
function flw_adapt(U, psi, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) where {NI,T} function flw_adapt(U, psi, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) where {NI,T}
@ -278,13 +201,123 @@ end
flw_adapt(U, psi, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) where {NI,T} = flw_adapt(U, psi, int, tend, int.eps_ini, gp, dpar, lp, ymws, dws) flw_adapt(U, psi, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) where {NI,T} = flw_adapt(U, psi, int, tend, int.eps_ini, gp, dpar, lp, ymws, dws)
"""
function Nablanabla!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes /`/` \\nabla^* \\nabla /`/` `si` and stores it in `si`.
"""
function Nablanabla!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
@timeit "Laplacian" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Nablanabla(so, U, si, dpar.th, lp)
end
end
return nothing
end
function Nablanabla!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D},SpaceParm{4,6,BC_OPEN,D}}) where {D}
SF_bndfix!(si,lp)
@timeit "Laplacian" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Nablanabla(so, U, si, dpar.th, lp)
end
end
SF_bndfix!(so,lp)
return nothing
end
function krnl_Nablanabla(so, U, si, th, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
@inbounds begin
if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end]))
so[b,r] = -4*si[b,r]
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
so[b,r] += 0.5*( th[1] * (U[b,1,r]*si[bu1,ru1]) +conj(th[1]) * (U[bd1,1,rd1]\si[bd1,rd1]) +
th[2] * (U[b,2,r]*si[bu2,ru2]) +conj(th[2]) * (U[bd2,2,rd2]\si[bd2,rd2]) +
th[3] * (U[b,3,r]*si[bu3,ru3]) +conj(th[3]) * (U[bd3,3,rd3]\si[bd3,rd3]) +
th[4] * (U[b,4,r]*si[bu4,ru4]) +conj(th[4]) * (U[bd4,4,rd4]\si[bd4,rd4]) )
end
end
return nothing
end
function krnl_Nablanabla(so, U, si, th, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
@inbounds begin
so[b,r] = -4*si[b,r]
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
so[b,r] += 0.5*( th[1] * (U[b,1,r]*si[bu1,ru1]) +conj(th[1]) * (U[bd1,1,rd1]\si[bd1,rd1]) +
th[2] * (U[b,2,r]*si[bu2,ru2]) +conj(th[2]) * (U[bd2,2,rd2]\si[bd2,rd2]) +
th[3] * (U[b,3,r]*si[bu3,ru3]) +conj(th[3]) * (U[bd3,3,rd3]\si[bd3,rd3]) +
th[4] * (U[b,4,r]*si[bu4,ru4]) +conj(th[4]) * (U[bd4,4,rd4]\si[bd4,rd4]) )
end
return nothing
end
function krnl_Nablanabla(so, U, si, th, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
@inbounds begin
if (point_time((b,r),lp) != 1)
so[b,r] = -4*si[b,r]
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
so[b,r] += 0.5*( th[1] * (U[b,1,r]*si[bu1,ru1]) +conj(th[1]) * (U[bd1,1,rd1]\si[bd1,rd1]) +
th[2] * (U[b,2,r]*si[bu2,ru2]) +conj(th[2]) * (U[bd2,2,rd2]\si[bd2,rd2]) +
th[3] * (U[b,3,r]*si[bu3,ru3]) +conj(th[3]) * (U[bd3,3,rd3]\si[bd3,rd3]) +
th[4] * (U[b,4,r]*si[bu4,ru4]) +conj(th[4]) * (U[bd4,4,rd4]\si[bd4,rd4]) )
end
end
return nothing
end
export Nablanabla!, flw, backflow, flw_adapt, bflw_step! export Nablanabla!, flw, backflow, flw_adapt, bflw_step!
""" """
function Dslash_sq!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) function Dslash_sq!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes /`/` //slashed{D}^2 si /`/` ans stores it in `si`. Computes /`/` //slashed{D}^2 si /`/` ans stores it in `si`.

664
src/Dirac/Diracoper.jl Normal file
View file

@ -0,0 +1,664 @@
## OPEN
"""
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes the Dirac operator (with the Wilson term) `\`\``D_w``\`\` with gauge field U and parameters `dpar` of the field `si` and stores it in `so`.
If `dpar.csw` is different from zero, the clover term should be stored in `dws.csw` via the Csw! function and is automatically included in the operator.
"""
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
SF_bndfix!(si,lp)
if abs(dpar.csw) > 1.0E-10
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
else
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
end
SF_bndfix!(so,lp)
return nothing
end
function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
# The field si is assumed to be zero at t = 0,T
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end]))
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == (lp.iL[4]-1))
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
return nothing
end
function krnl_Dw!(so, U, si, m0, tm, th, ct, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
# The field si is assumed to be zero at t = 0,T
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end]))
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r])
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == (lp.iL[4]-1))
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
return nothing
end
"""
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes \`\` \\gamma_5 \`\` times the Dirac operator (with the Wilson term) with gauge field U and parameters `dpar` of the field `si` and stores it in `so`.
If `dpar.csw` is different from zero, the clover term should be stored in `dws.csw` via the Csw! function and is automatically included in the operator.
"""
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
SF_bndfix!(si,lp)
if abs(dpar.csw) > 1.0E-10
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
else
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
end
SF_bndfix!(so,lp)
return nothing
end
function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
# The field si is assumed to be zero at t = 0,T
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end]))
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == (lp.iL[4]-1))
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r]
return nothing
end
function krnl_g5Dw!(so, U, si, m0, tm, th, ct, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
# The field si is assumed to be zero at t = 0,T
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end]))
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == (lp.iL[4]-1))
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r]
return nothing
end
"""
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Applies the operator \`\` \\gamma_5 D_w \`\` twice to `si` and stores the result in `so`. This is equivalent to appling the operator \`\` D_w^\\dagger D_w \`\`
The Dirac operator is the same as in the functions `Dw!` and `g5Dw!`
"""
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
SF_bndfix!(si,lp)
if abs(dpar.csw) > 1.0E-10
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
SF_bndfix!(dws.st,lp)
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
SF_bndfix!(so,lp)
end
else
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
SF_bndfix!(dws.st,lp)
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, dpar.ct, lp)
end
end
SF_bndfix!(so,lp)
end
end
return nothing
end
## PERDIODIC
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp)
end
end
else
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, lp)
end
end
end
return nothing
end
function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]+ im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
end
return nothing
end
function krnl_Dw!(so, U, si, m0, tm, th, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r])
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
end
return nothing
end
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp)
end
end
else
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, lp)
end
end
end
return nothing
end
function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r]
end
return nothing
end
function krnl_g5Dw!(so, U, si, m0, tm, th, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r]
end
return nothing
end
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp)
end
end
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, lp)
end
end
end
else
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, lp)
end
end
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, lp)
end
end
end end
return nothing
end
## SF
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
SF_bndfix!(si,lp)
if abs(dpar.csw) > 1.0E-10
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
else
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
end
return nothing
end
function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
return nothing
end
function krnl_Dw!(so, U, si, m0, tm, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r])
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
return nothing
end
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
SF_bndfix!(si,lp)
if abs(dpar.csw) > 1.0E-10
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
else
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
end
return nothing
end
function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r]
return nothing
end
function krnl_g5Dw!(so, U, si, m0, tm, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r]
return nothing
end
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
SF_bndfix!(dws.st,lp)
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
SF_bndfix!(so,lp)
end
else
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
SF_bndfix!(dws.st,lp)
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, dpar.ct, lp)
end
end
SF_bndfix!(so,lp)
end
end
return nothing
end

View file

@ -9,7 +9,11 @@
### created: Mon Jul 12 18:31:19 2021 ### created: Mon Jul 12 18:31:19 2021
### ###
function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,B,D}) where {T,NB,N,M,B,D}
##
## OPEN
##
function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,NB,N,M,D}
b = Int64(CUDA.threadIdx().x) b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x) r = Int64(CUDA.blockIdx().x)
@ -21,7 +25,318 @@ function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, zt
@inbounds begin @inbounds begin
for id1 in N:-1:1 for id1 in N:-1:1
bu1, ru1 = up((b, r), id1, lp) bu1, ru1 = up((b, r), id1, lp)
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1==N) TOBC = (id1==N)
for id2 = 1:id1-1
bu2, ru2 = up((b, r), id2, lp)
ipl = ipl + 1
TWP = (I[id1]==1) && (I[id2]==1)
TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) )
TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) )
# H2 staple
(b1, r1) = up((b,r), id1, lp)
(b2, r2) = up((b1,r1), id1, lp)
gb = U[b2,id2,r2]
(b2, r2) = up((b1,r1), id2, lp)
h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2]
# H3 staple
(b1, r1) = up((b,r), id2, lp)
(b2, r2) = up((b1,r1), id2, lp)
(b3, r3) = up((b1,r1), id1, lp)
gc = U[b3,id2,r3]
h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc
# END staples
ga = U[bu1,id2,ru1]
g2 = U[b,id2,r]\U[b,id1,r]
if ( (it == lp.iL[end]) || (it == 1) ) && !TOBC
S += 0.5*cG*(c0*tr(g2*ga/U[bu2,id1,ru2]) + c1*tr(g2*ga/h3) + c1*tr(g2*h2/U[bu2,id1,ru2]))
elseif (it == lp.iL[end]-1) && TOBC
S += c0*tr(g2*ga/U[bu2,id1,ru2]) + c1*tr(g2*ga/h3)
elseif (it == lp.iL[end]) && TOBC
nothing
else
if TWP
S += (ztw[ipl]*c0)*tr(g2*ga/U[bu2,id1,ru2])
else
S += c0*tr(g2*ga/U[bu2,id1,ru2])
end
if TWH2
S += (ztw[ipl]*c1)*tr(g2*h2/U[bu2,id1,ru2])
else
S += c1*tr(g2*h2/U[bu2,id1,ru2])
end
if TWH3
S += (ztw[ipl]*c1)*tr(g2*ga/h3)
else
S += c1*tr(g2*ga/h3)
end
end
end
end
plx[I] = S
end
return nothing
end
function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
S = zero(eltype(plx))
ipl = 0
for id1 in N:-1:1
bu1, ru1 = up((b, r), id1, lp)
TOBC = (id1==N)
for id2 = 1:id1-1
bu2, ru2 = up((b, r), id2, lp)
ipl = ipl + 1
TWP = (I[id1]==1) && (I[id2]==1)
gt1 = U[bu1,id2,ru1]
if ( (it == lp.iL[end]) || (it == 1)) && !TOBC
S += 0.5*cG*(tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2])))
elseif (it == lp.iL[end]) && TOBC
nothing
else
if TWP
S += ztw[ipl]*tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2]))
else
S += tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2]))
end
end
end
end
plx[I] = S
end
return nothing
end
function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
@inbounds begin
id1, id2 = lp.plidx[ipl]
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
TWP = (I[id1]==1)&&(I[id2]==1)
TOBC = (id1 == N)
gt1 = U[bu1,id2,ru1]
g1 = gt1/U[bu2,id1,ru2]
g2 = U[b,id2,r]\U[b,id1,r]
if !TOBC && ( (it == 1) || (it == lp.iL[end]) )
X = 0.5*cG*projalg(U[b,id1,r]*g1/U[b,id2,r])
frc1[b ,id1, r ] -= X
frc1[b ,id2, r ] += X
frc2[bu1,id2,ru1] -= 0.5*cG*projalg(g1*g2)
frc2[bu2,id1,ru2] += 0.5*cG*projalg(g2*g1)
elseif TOBC && (it == lp.iL[end])
nothing
else
if TWP
X = projalg(ztw,U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(ztw,g1*g2)
frc2[bu2,id1,ru2] += projalg(ztw,g2*g1)
else
X = projalg(U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(g1*g2)
frc2[bu2,id1,ru2] += projalg(g2*g1)
end
frc1[b ,id1, r ] -= X
frc1[b ,id2, r ] += X
end
end
return nothing
end
function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
@inbounds begin
id1, id2 = lp.plidx[ipl]
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
TOBC = (id1 == N)
TWP = (I[id1]==1) && (I[id2]==1)
TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) )
TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) )
TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) )
TWH4 = TWP || ( (I[id1]==2) && (I[id2]==1) )
# H1 staple
(b1, r1) = dw((b,r), id2, lp)
(b2, r2) = up((b1,r1), id1, lp)
gc = U[b2,id2,r2]
h1 = (U[b1,id2,r1]\U[b1,id1,r1])*gc
# H2 staple
(b1, r1) = up((b,r), id1, lp)
(b2, r2) = up((b1,r1), id1, lp)
gb = U[b2,id2,r2]
(b2, r2) = up((b1,r1), id2, lp)
h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2]
# H3 staple
(b1, r1) = up((b,r), id2, lp)
(b2, r2) = up((b1,r1), id2, lp)
(b3, r3) = up((b1,r1), id1, lp)
gc = U[b3,id2,r3]
h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc
# H4 staple
(b1, r1) = dw((b,r), id1, lp)
(b2, r2) = up((b1,r1), id2, lp)
h4 = (U[b1,id1,r1]\U[b1,id2,r1])*U[b2,id1,r2]
# END staples
ga = U[bu1,id2,ru1]
g1 = ga/U[bu2,id1,ru2]
g2 = U[b,id2,r]\U[b,id1,r]
if !TOBC && ( (it == 1) || (it == lp.iL[end]) )
X = 0.5*cG*(c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) )
frc1[b,id1,r] -= X + 0.5*cG*c1*projalg(U[b,id1,r]*g1/h4)
frc1[b,id2,r] += X + 0.5*cG*c1*projalg(h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= 0.5*cG*c0*projalg(g1*g2)
frc2[bu2,id1,ru2] += 0.5*cG*c0*projalg(g2*g1)
frc2[bu1,id2,ru1] -= 0.5*cG*c1*projalg((g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += 0.5*cG*c1*projalg((U[b,id2,r]\h1)*g1)
frc2[bu2,id1,ru2] += 0.5*cG*c1*projalg(g2*h2/U[bu2,id1,ru2])
frc2[bu1,id2,ru1] -= 0.5*cG*c1*projalg((ga/h3)*g2)
frc2[bu1,id2,ru1] -= 0.5*cG*c1*projalg((g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += 0.5*cG*c1*projalg(h4\U[b,id1,r]*g1)
elseif TOBC && (it == lp.iL[end])
nothing
elseif TOBC && (it == 1)
X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc1[b,id1,r] -= X
frc1[b,id2,r] += X + c1*projalg(h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c0*projalg(g1*g2)
frc2[bu2,id1,ru2] += c0*projalg(g2*g1)
frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1)
frc2[bu2,id1,ru2] += c1*projalg(g2*h2/U[bu2,id1,ru2])
frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2)
elseif TOBC && (it == (lp.iL[end]-1) )
X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc1[b,id1,r] -= X + c1*projalg(U[b,id1,r]*g1/h4)
frc1[b,id2,r] += X + c1*projalg(h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c0*projalg(g1*g2)
frc2[bu2,id1,ru2] += c0*projalg(g2*g1)
frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1)
frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2)
frc2[bu1,id2,ru1] -= c1*projalg((g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1)
else
if TWP
X = projalg(c0*ztw,U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(c0*ztw,g1*g2)
frc2[bu2,id1,ru2] += projalg(c0*ztw,g2*g1)
else
X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c0*projalg(g1*g2)
frc2[bu2,id1,ru2] += c0*projalg(g2*g1)
end
if TWH1
frc1[b,id2,r] += projalg(ztw*c1,h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += projalg(ztw*c1,(U[b,id2,r]\h1)*g1)
else
frc1[b,id2,r] += c1*projalg(h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1)
end
if TWH2
X += projalg(ztw*c1,U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2]))
frc2[bu2,id1,ru2] += projalg(ztw*c1,g2*h2/U[bu2,id1,ru2])
else
X += c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2]))
frc2[bu2,id1,ru2] += c1*projalg(g2*h2/U[bu2,id1,ru2])
end
if TWH3
X += projalg(ztw*c1,U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(ga/h3)*g2)
else
X += c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2)
end
if TWH4
frc1[b,id1,r] -= projalg(ztw*c1,U[b,id1,r]*g1/h4)
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += projalg(ztw*c1,h4\U[b,id1,r]*g1)
else
frc1[b,id1,r] -= c1*projalg(U[b,id1,r]*g1/h4)
frc2[bu1,id2,ru1] -= c1*projalg((g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1)
end
frc1[b,id1,r] -= X
frc1[b,id2,r] += X
end
end
return nothing
end
##
## SF
##
function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::Union{SpaceParm{N,M,BC_SF_ORBI,D},SpaceParm{N,M,BC_SF_AFWB,D}}) where {T,NB,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
ipl = 0
S = zero(eltype(plx))
@inbounds begin
for id1 in N:-1:1
bu1, ru1 = up((b, r), id1, lp)
SFBC = (id1==N)
for id2 = 1:id1-1 for id2 = 1:id1-1
bu2, ru2 = up((b, r), id2, lp) bu2, ru2 = up((b, r), id2, lp)
@ -95,7 +410,7 @@ function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, zt
return nothing return nothing
end end
function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::Union{SpaceParm{N,M,BC_SF_ORBI,D},SpaceParm{N,M,BC_SF_AFWB,D}}) where {T,N,M,D}
@inbounds begin @inbounds begin
@ -103,8 +418,7 @@ function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,B
r = Int64(CUDA.blockIdx().x) r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp) I = point_coord((b,r), lp)
it = I[N] it = I[N]
IBND = ( ( (B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && IBND = ( (it == 1) || (it == lp.iL[end]))
( (it == 1) || (it == lp.iL[end])) )
S = zero(eltype(plx)) S = zero(eltype(plx))
ipl = 0 ipl = 0
@ -141,7 +455,7 @@ function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,B
return nothing return nothing
end end
function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, ipl, lp::Union{SpaceParm{N,M,BC_SF_ORBI,D},SpaceParm{N,M,BC_SF_AFWB,D}}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x) b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x) r = Int64(CUDA.blockIdx().x)
@ -154,7 +468,7 @@ function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw,
bu2, ru2 = up((b, r), id2, lp) bu2, ru2 = up((b, r), id2, lp)
TWP = (I[id1]==1)&&(I[id2]==1) TWP = (I[id1]==1)&&(I[id2]==1)
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == N) SFBC = (id1 == N)
if SFBC && (it == lp.iL[end]) if SFBC && (it == lp.iL[end])
gt1 = Ubnd[id2] gt1 = Ubnd[id2]
@ -195,7 +509,7 @@ function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw,
return nothing return nothing
end end
function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::Union{SpaceParm{N,M,BC_SF_ORBI,D},SpaceParm{N,M,BC_SF_AFWB,D}}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x) b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x) r = Int64(CUDA.blockIdx().x)
@ -207,7 +521,7 @@ function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG,
bu1, ru1 = up((b, r), id1, lp) bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp) bu2, ru2 = up((b, r), id2, lp)
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == N) SFBC = (id1 == N)
TWP = (I[id1]==1) && (I[id2]==1) TWP = (I[id1]==1) && (I[id2]==1)
TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) ) TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) )
TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) ) TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) )
@ -334,6 +648,253 @@ function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG,
return nothing return nothing
end end
##
## PERIODIC
##
function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,BC_PERIODIC,D}) where {T,NB,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
ipl = 0
S = zero(eltype(plx))
@inbounds begin
for id1 in N:-1:1
bu1, ru1 = up((b, r), id1, lp)
for id2 = 1:id1-1
bu2, ru2 = up((b, r), id2, lp)
ipl = ipl + 1
TWP = (I[id1]==1) && (I[id2]==1)
TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) )
TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) )
# H2 staple
(b1, r1) = up((b,r), id1, lp)
(b2, r2) = up((b1,r1), id1, lp)
gb = U[b2,id2,r2]
(b2, r2) = up((b1,r1), id2, lp)
h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2]
# H3 staple
(b1, r1) = up((b,r), id2, lp)
(b2, r2) = up((b1,r1), id2, lp)
(b3, r3) = up((b1,r1), id1, lp)
gc = U[b3,id2,r3]
h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc
# END staples
ga = U[bu1,id2,ru1]
g2 = U[b,id2,r]\U[b,id1,r]
if TWP
S += (ztw[ipl]*c0)*tr(g2*ga/U[bu2,id1,ru2])
else
S += c0*tr(g2*ga/U[bu2,id1,ru2])
end
if TWH2
S += (ztw[ipl]*c1)*tr(g2*h2/U[bu2,id1,ru2])
else
S += c1*tr(g2*h2/U[bu2,id1,ru2])
end
if TWH3
S += (ztw[ipl]*c1)*tr(g2*ga/h3)
else
S += c1*tr(g2*ga/h3)
end
end
end
plx[I] = S
end
return nothing
end
function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,BC_PERIODIC,D}) where {T,N,M,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
S = zero(eltype(plx))
ipl = 0
for id1 in N:-1:1
bu1, ru1 = up((b, r), id1, lp)
for id2 = 1:id1-1
bu2, ru2 = up((b, r), id2, lp)
ipl = ipl + 1
TWP = (I[id1]==1) && (I[id2]==1)
gt1 = U[bu1,id2,ru1]
if TWP
S += ztw[ipl]*tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2]))
else
S += tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2]))
end
end
end
plx[I] = S
end
return nothing
end
function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_PERIODIC,D}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
@inbounds begin
id1, id2 = lp.plidx[ipl]
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
TWP = (I[id1]==1)&&(I[id2]==1)
gt1 = U[bu1,id2,ru1]
g1 = gt1/U[bu2,id1,ru2]
g2 = U[b,id2,r]\U[b,id1,r]
if TWP
X = projalg(ztw,U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(ztw,g1*g2)
frc2[bu2,id1,ru2] += projalg(ztw,g2*g1)
else
X = projalg(U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(g1*g2)
frc2[bu2,id1,ru2] += projalg(g2*g1)
end
frc1[b ,id1, r ] -= X
frc1[b ,id2, r ] += X
end
return nothing
end
function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_PERIODIC,D}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
@inbounds begin
id1, id2 = lp.plidx[ipl]
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
TWP = (I[id1]==1) && (I[id2]==1)
TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) )
TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) )
TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) )
TWH4 = TWP || ( (I[id1]==2) && (I[id2]==1) )
# H1 staple
(b1, r1) = dw((b,r), id2, lp)
(b2, r2) = up((b1,r1), id1, lp)
gc = U[b2,id2,r2]
h1 = (U[b1,id2,r1]\U[b1,id1,r1])*gc
# H2 staple
(b1, r1) = up((b,r), id1, lp)
(b2, r2) = up((b1,r1), id1, lp)
gb = U[b2,id2,r2]
(b2, r2) = up((b1,r1), id2, lp)
h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2]
# H3 staple
(b1, r1) = up((b,r), id2, lp)
(b2, r2) = up((b1,r1), id2, lp)
(b3, r3) = up((b1,r1), id1, lp)
gc = U[b3,id2,r3]
h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc
# H4 staple
(b1, r1) = dw((b,r), id1, lp)
(b2, r2) = up((b1,r1), id2, lp)
h4 = (U[b1,id1,r1]\U[b1,id2,r1])*U[b2,id1,r2]
# END staples
ga = U[bu1,id2,ru1]
g1 = ga/U[bu2,id1,ru2]
g2 = U[b,id2,r]\U[b,id1,r]
if TWP
X = projalg(c0*ztw,U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(c0*ztw,g1*g2)
frc2[bu2,id1,ru2] += projalg(c0*ztw,g2*g1)
else
X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c0*projalg(g1*g2)
frc2[bu2,id1,ru2] += c0*projalg(g2*g1)
end
if TWH1
frc1[b,id2,r] += projalg(ztw*c1,h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += projalg(ztw*c1,(U[b,id2,r]\h1)*g1)
else
frc1[b,id2,r] += c1*projalg(h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1)
end
if TWH2
X += projalg(ztw*c1,U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2]))
frc2[bu2,id1,ru2] += projalg(ztw*c1,g2*h2/U[bu2,id1,ru2])
else
X += c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2]))
frc2[bu2,id1,ru2] += c1*projalg(g2*h2/U[bu2,id1,ru2])
end
if TWH3
X += projalg(ztw*c1,U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(ga/h3)*g2)
else
X += c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2)
end
if TWH4
frc1[b,id1,r] -= projalg(ztw*c1,U[b,id1,r]*g1/h4)
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += projalg(ztw*c1,h4\U[b,id1,r]*g1)
else
frc1[b,id1,r] -= c1*projalg(U[b,id1,r]*g1/h4)
frc2[bu1,id2,ru1] -= c1*projalg((g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1)
end
frc1[b,id1,r] -= X
frc1[b,id2,r] += X
end
return nothing
end
""" """
function force_gauge(ymws::YMworkspace, U, gp::GaugeParm, lp::SpaceParm) function force_gauge(ymws::YMworkspace, U, gp::GaugeParm, lp::SpaceParm)
@ -388,4 +949,3 @@ function force_pln!(frc1, ftmp, U, Ubnd, cG, ztw, lp::SpaceParm, c0=1)
return nothing return nothing
end end

View file

@ -54,14 +54,28 @@ function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,BC_PERIODI
return nothing return nothing
end end
function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
for id in 1:lp.ndim
frc[b,id,r] = SU3alg(m[b,id,1,r], m[b,id,2,r], m[b,id,3,r],
m[b,id,4,r], m[b,id,5,r], m[b,id,6,r],
m[b,id,7,r], m[b,id,8,r])
end
end
return nothing
end
function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::Union{SpaceParm{N,M,BC_SF_ORBI,D},SpaceParm{N,M,BC_SF_AFWB,D}}) where {T,N,M,D}
@inbounds begin @inbounds begin
b = Int64(CUDA.threadIdx().x) b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x) r = Int64(CUDA.blockIdx().x)
it = point_time((b,r), lp) it = point_time((b,r), lp)
if ((B==BC_SF_AFWB)||(B==BC_SF_ORBI))
if it == 1 if it == 1
for id in 1:lp.ndim-1 for id in 1:lp.ndim-1
frc[b,id,r] = zero(T) frc[b,id,r] = zero(T)
@ -77,7 +91,6 @@ function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,B,D}) wher
end end
end end
end end
end
return nothing return nothing
end end

View file

@ -135,6 +135,7 @@ function krnl_add_zth!(frc, frc2::AbstractArray{TA}, U::AbstractArray{TG}, lp::S
it = point_time((b, r), lp) it = point_time((b, r), lp)
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) )
OBC = (B == BC_OPEN)
@inbounds for id in 1:N @inbounds for id in 1:N
bu, ru = up((b,r), id, lp) bu, ru = up((b,r), id, lp)
@ -152,13 +153,21 @@ function krnl_add_zth!(frc, frc2::AbstractArray{TA}, U::AbstractArray{TG}, lp::S
frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) +
projalg(U[b,id,r]*X/U[b,id,r])) projalg(U[b,id,r]*X/U[b,id,r]))
end end
end
if OBC
if (it > 1) && (it < lp.iL[end])
frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) +
projalg(U[b,id,r]*X/U[b,id,r]))
elseif ((it == lp.iL[end]) || (it == 1)) && (id < N)
frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) +
projalg(U[b,id,r]*X/U[b,id,r]))
end
else else
frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) +
projalg(U[b,id,r]*X/U[b,id,r])) projalg(U[b,id,r]*X/U[b,id,r]))
end end
end end
end end
return nothing return nothing
end end
@ -265,6 +274,7 @@ function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws:
ztw = ztwist(gp, lp) ztw = ztwist(gp, lp)
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) )
OBC = (B == BC_OPEN)
tp = ntuple(i->i, N-1) tp = ntuple(i->i, N-1)
V3 = prod(lp.iL[1:end-1]) V3 = prod(lp.iL[1:end-1])
@ -285,6 +295,10 @@ function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws:
if !SFBC if !SFBC
Eslc[1,ipl] = Etmp[1] + Etmp[end] Eslc[1,ipl] = Etmp[1] + Etmp[end]
end end
if OBC ## Check normalization of timelike boundary plaquettes
Eslc[end,ipl] = Etmp[end-1]
Eslc[1,ipl] = Etmp[1]
end
else else
for it in 1:lp.iL[end] for it in 1:lp.iL[end]
Eslc[it,ipl] = 2*Etmp[it] Eslc[it,ipl] = 2*Etmp[it]
@ -327,7 +341,6 @@ function krnl_plaq_pln!(plx, U::AbstractArray{T}, Ubnd, ztw, ipl, lp::SpaceParm{
plx[I] = tr(U[b,id1,r]*gt / (U[b,id2,r]*U[bu2,id1,ru2])) plx[I] = tr(U[b,id1,r]*gt / (U[b,id2,r]*U[bu2,id1,ru2]))
end end
end end
return nothing return nothing
end end
@ -350,21 +363,18 @@ function Qtop(Qslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace)
CUDA.@sync begin CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp) CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp)
end end
CUDA.@sync begin CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 2,4, ztw[2], ztw[4], lp) CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 2,4, ztw[2], ztw[4], lp)
end end
CUDA.@sync begin CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, +, ymws.frc1, ymws.frc2, lp) CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, +, ymws.frc1, ymws.frc2, lp)
end end
CUDA.@sync begin CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 3,6, ztw[3], ztw[6], lp) CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 3,6, ztw[3], ztw[6], lp)
end end
CUDA.@sync begin CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp) CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp)
end end
Qslc .= reshape(Array(CUDA.reduce(+, ymws.rm; dims=tp)),lp.iL[end])./(32*pi^2) Qslc .= reshape(Array(CUDA.reduce(+, ymws.rm; dims=tp)),lp.iL[end])./(32*pi^2)
end end
@ -474,6 +484,7 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
#First plane #First plane
id1, id2 = lp.plidx[ipl1] id1, id2 = lp.plidx[ipl1]
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4) SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4)
OBC = ((B == BC_OPEN) && (id1 == 4))
TWP = ((I[id1]==1)&&(I[id2]==1)) TWP = ((I[id1]==1)&&(I[id2]==1))
bu1, ru1 = up((b, r), id1, lp) bu1, ru1 = up((b, r), id1, lp)
@ -493,6 +504,11 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
frc1[bu1,2,ru1] = zero(TA) frc1[bu1,2,ru1] = zero(TA)
frc1[bd,3,rd] = zero(TA) frc1[bd,3,rd] = zero(TA)
frc1[bu2,4,ru2] = projalg(l2*l1) frc1[bu2,4,ru2] = projalg(l2*l1)
elseif OBC && (it == lp.iL[end])
frc1[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r])
frc1[bu1,2,ru1] = zero(TA)
frc1[bd,3,rd] = zero(TA)
frc1[bu2,4,ru2] = projalg(l2*l1)
else else
if TWP if TWP
frc1[b,1,r] = projalg(ztw1, U[b,id1,r]*l1/U[b,id2,r]) frc1[b,1,r] = projalg(ztw1, U[b,id1,r]*l1/U[b,id2,r])
@ -510,6 +526,7 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
# Second plane # Second plane
id1, id2 = lp.plidx[ipl2] id1, id2 = lp.plidx[ipl2]
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4) SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4)
OBC = ((B == BC_OPEN) && (id1 == 4))
TWP = ((I[id1]==1)&&(I[id2]==1)) TWP = ((I[id1]==1)&&(I[id2]==1))
bu1, ru1 = up((b, r), id1, lp) bu1, ru1 = up((b, r), id1, lp)
@ -529,6 +546,11 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
frc2[bu1,2,ru1] = zero(TA) frc2[bu1,2,ru1] = zero(TA)
frc2[bd,3,rd] = zero(TA) frc2[bd,3,rd] = zero(TA)
frc2[bu2,4,ru2] = projalg(l2*l1) frc2[bu2,4,ru2] = projalg(l2*l1)
elseif OBC && (it == lp.iL[end])
frc1[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r])
frc1[bu1,2,ru1] = zero(TA)
frc1[bd,3,rd] = zero(TA)
frc1[bu2,4,ru2] = projalg(l2*l1)
else else
if TWP if TWP
frc2[b,1,r] = projalg(ztw2, U[b,id1,r]*l1/U[b,id2,r]) frc2[b,1,r] = projalg(ztw2, U[b,id1,r]*l1/U[b,id2,r])
@ -543,7 +565,5 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
end end
end end
end end
return nothing return nothing
end end