mirror of
https://igit.ific.uv.es/alramos/latticegpu.jl.git
synced 2025-05-14 19:23:42 +02:00
SU2 routines re-organized in different files
This commit is contained in:
parent
d11f7eefa3
commit
a27ac98554
4 changed files with 149 additions and 122 deletions
113
src/Groups/AlgebraSU2.jl
Normal file
113
src/Groups/AlgebraSU2.jl
Normal file
|
@ -0,0 +1,113 @@
|
||||||
|
###
|
||||||
|
### "THE BEER-WARE LICENSE":
|
||||||
|
### Alberto Ramos wrote this file. As long as you retain this
|
||||||
|
### notice you can do whatever you want with this stuff. If we meet some
|
||||||
|
### day, and you think this stuff is worth it, you can buy me a beer in
|
||||||
|
### return. <alberto.ramos@cern.ch>
|
||||||
|
###
|
||||||
|
### file: AlgebraSU2.jl
|
||||||
|
### created: Sun Oct 3 09:24:25 2021
|
||||||
|
###
|
||||||
|
|
||||||
|
SU2alg(x::T) where T <: AbstractFloat = SU2alg{T}(x,0.0,0.0)
|
||||||
|
SU2alg(v::Vector{T}) where T <: AbstractFloat = SU2alg{T}(v[1],v[2],v[3])
|
||||||
|
projalg(g::SU2{T}) where T <: AbstractFloat = SU2alg{T}(imag(g.t1), real(g.t2), imag(g.t2))
|
||||||
|
dot(a::SU2alg{T}, b::SU2alg{T}) where T <: AbstractFloat = a.t1*b.t1 + a.t2*b.t2 + a.t3*b.t3
|
||||||
|
norm(a::SU2alg{T}) where T <: AbstractFloat = sqrt(a.t1^2 + a.t2^2 + a.t3^2)
|
||||||
|
norm2(a::SU2alg{T}) where T <: AbstractFloat = a.t1^2 + a.t2^2 + a.t3^2
|
||||||
|
|
||||||
|
Base.:+(a::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(a.t1,a.t2,a.t3)
|
||||||
|
Base.:-(a::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(-a.t1,-a.t2,-a.t3)
|
||||||
|
Base.:+(a::SU2alg{T},b::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(a.t1+b.t1,a.t2+b.t2,a.t3+b.t3)
|
||||||
|
Base.:-(a::SU2alg{T},b::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(a.t1-b.t1,a.t2-b.t2,a.t3-b.t3)
|
||||||
|
|
||||||
|
Base.:*(a::SU2alg{T},b::Number) where T <: AbstractFloat = SU2alg{T}(a.t1*b,a.t2*b,a.t3*b)
|
||||||
|
Base.:*(b::Number,a::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(a.t1*b,a.t2*b,a.t3*b)
|
||||||
|
Base.:/(a::SU2alg{T},b::Number) where T <: AbstractFloat = SU2alg{T}(a.t1/b,a.t2/b,a.t3/b)
|
||||||
|
|
||||||
|
"""
|
||||||
|
function Base.exp(a::T, t::Number=1) where {T <: Algebra}
|
||||||
|
|
||||||
|
Computes `exp(a)`
|
||||||
|
"""
|
||||||
|
function Base.exp(a::SU2alg{T}) where T <: AbstractFloat
|
||||||
|
|
||||||
|
rm = sqrt( a.t1^2+a.t2^2+a.t3^2 )/2.0
|
||||||
|
if (abs(rm) < 0.05)
|
||||||
|
rms = rm^2/2.0
|
||||||
|
ca = 1.0 - rms *(1.0 - (rms/6.0 )*(1.0 - rms/15.0))
|
||||||
|
sa = 0.5 - rms/6.0*(1.0 - (rms/10.0)*(1.0 - rms/21.0))
|
||||||
|
else
|
||||||
|
ca = CUDA.cos(rm)
|
||||||
|
sa = CUDA.sin(rm)/(2.0*rm)
|
||||||
|
end
|
||||||
|
|
||||||
|
t1 = complex(ca,sa*a.t1)
|
||||||
|
t2 = complex(sa*a.t2,sa*a.t3)
|
||||||
|
return SU2{T}(t1,t2)
|
||||||
|
end
|
||||||
|
|
||||||
|
function Base.exp(a::SU2alg{T}, t::T) where T <: AbstractFloat
|
||||||
|
|
||||||
|
rm = t*sqrt( a.t1^2+a.t2^2+a.t3^2 )/2.0
|
||||||
|
if (abs(rm) < 0.05)
|
||||||
|
rms = rm^2/2.0
|
||||||
|
ca = 1.0 - rms *(1.0 - (rms/6.0 )*(1.0 - rms/15.0))
|
||||||
|
sa = t*(0.5 - rms/6.0*(1.0 - (rms/10.0)*(1.0 - rms/21.0)))
|
||||||
|
else
|
||||||
|
ca = CUDA.cos(rm)
|
||||||
|
sa = t*CUDA.sin(rm)/(2.0*rm)
|
||||||
|
end
|
||||||
|
|
||||||
|
t1 = complex(ca,sa*a.t1)
|
||||||
|
t2 = complex(sa*a.t2,sa*a.t3)
|
||||||
|
return SU2{T}(t1,t2)
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
function expm(g::G, a::A) where {G <: Algebra, A <: Algebra}
|
||||||
|
|
||||||
|
Computes `exp(a)*g`
|
||||||
|
|
||||||
|
"""
|
||||||
|
function expm(g::SU2{T}, a::SU2alg{T}) where T <: AbstractFloat
|
||||||
|
|
||||||
|
rm = sqrt( a.t1^2+a.t2^2+a.t3^2 )/2.0
|
||||||
|
if (abs(rm) < 0.05)
|
||||||
|
rms = rm^2/2.0
|
||||||
|
ca = 1.0 - rms *(1.0 - (rms/6.0 )*(1.0 - rms/15.0))
|
||||||
|
sa = 0.5 - rms/6.0*(1.0 - (rms/10.0)*(1.0 - rms/21.0))
|
||||||
|
else
|
||||||
|
ca = CUDA.cos(rm)
|
||||||
|
sa = CUDA.sin(rm)/(2.0*rm)
|
||||||
|
end
|
||||||
|
|
||||||
|
t1 = complex(ca,sa*a.t1)*g.t1-complex(sa*a.t2,sa*a.t3)*conj(g.t2)
|
||||||
|
t2 = complex(ca,sa*a.t1)*g.t2+complex(sa*a.t2,sa*a.t3)*conj(g.t1)
|
||||||
|
return SU2{T}(t1,t2)
|
||||||
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
function expm(g::SU2, a::SU2alg, t::Float64)
|
||||||
|
|
||||||
|
Computes `exp(t*a)*g`
|
||||||
|
|
||||||
|
"""
|
||||||
|
function expm(g::SU2{T}, a::SU2alg{T}, t::T) where T <: AbstractFloat
|
||||||
|
|
||||||
|
rm = t*sqrt( a.t1^2+a.t2^2+a.t3^2 )/2.0
|
||||||
|
if (abs(rm) < 0.05)
|
||||||
|
rms = rm^2/2.0
|
||||||
|
ca = 1.0 - rms *(1.0 - (rms/6.0 )*(1.0 - rms/15.0))
|
||||||
|
sa = t*(0.5 - rms/6.0*(1.0 - (rms/10.0)*(1.0 - rms/21.0)))
|
||||||
|
else
|
||||||
|
ca = CUDA.cos(rm)
|
||||||
|
sa = t*CUDA.sin(rm)/(2.0*rm)
|
||||||
|
end
|
||||||
|
|
||||||
|
t1 = complex(ca,sa*a.t1)*g.t1-complex(sa*a.t2,sa*a.t3)*conj(g.t2)
|
||||||
|
t2 = complex(ca,sa*a.t1)*g.t2+complex(sa*a.t2,sa*a.t3)*conj(g.t1)
|
||||||
|
return SU2{T}(t1,t2)
|
||||||
|
|
||||||
|
end
|
|
@ -15,20 +15,12 @@
|
||||||
# https://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
|
# https://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
|
||||||
using CUDA, Random
|
using CUDA, Random
|
||||||
|
|
||||||
import Base.:*, Base.:+, Base.:-,Base.:/,Base.:\,Base.exp,Base.zero,Base.one
|
|
||||||
import Random.rand
|
|
||||||
struct SU2{T} <: Group
|
|
||||||
t1::Complex{T}
|
|
||||||
t2::Complex{T}
|
|
||||||
end
|
|
||||||
SU2(a::T, b::T) where T <: AbstractFloat = SU2{T}(complex(a), complex(b))
|
SU2(a::T, b::T) where T <: AbstractFloat = SU2{T}(complex(a), complex(b))
|
||||||
inverse(b::SU2{T}) where T <: AbstractFloat = SU2{T}(conj(b.t1), -b.t2)
|
inverse(b::SU2{T}) where T <: AbstractFloat = SU2{T}(conj(b.t1), -b.t2)
|
||||||
dag(a::SU2{T}) where T <: AbstractFloat = inverse(a)
|
dag(a::SU2{T}) where T <: AbstractFloat = inverse(a)
|
||||||
norm(a::SU2{T}) where T <: AbstractFloat = sqrt(abs2(a.t1) + abs2(a.t2))
|
norm(a::SU2{T}) where T <: AbstractFloat = sqrt(abs2(a.t1) + abs2(a.t2))
|
||||||
norm2(a::SU2{T}) where T <: AbstractFloat = abs2(a.t1) + abs2(a.t2)
|
norm2(a::SU2{T}) where T <: AbstractFloat = abs2(a.t1) + abs2(a.t2)
|
||||||
tr(g::SU2{T}) where T <: AbstractFloat = complex(2.0*real(g.t1), 0.0)
|
tr(g::SU2{T}) where T <: AbstractFloat = complex(2.0*real(g.t1), 0.0)
|
||||||
Base.one(::Type{SU2{T}}) where T <: AbstractFloat = SU2{T}(one(T),zero(T))
|
|
||||||
Random.rand(rng::AbstractRNG, ::Random.SamplerType{SU2{T}}) where T <: AbstractFloat = exp(SU2alg{T}(randn(rng,T),randn(rng,T),randn(rng,T)))
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
function normalize(a::T) where {T <: Group}
|
function normalize(a::T) where {T <: Group}
|
||||||
|
@ -47,29 +39,6 @@ Base.:*(a::SU2{T},b::SU2{T}) where T <: AbstractFloat = SU2{T}(a.t1*b.t1-a.t2*co
|
||||||
Base.:/(a::SU2{T},b::SU2{T}) where T <: AbstractFloat = SU2{T}(a.t1*conj(b.t1)+a.t2*conj(b.t2),-a.t1*b.t2+a.t2*b.t1)
|
Base.:/(a::SU2{T},b::SU2{T}) where T <: AbstractFloat = SU2{T}(a.t1*conj(b.t1)+a.t2*conj(b.t2),-a.t1*b.t2+a.t2*b.t1)
|
||||||
Base.:\(a::SU2{T},b::SU2{T}) where T <: AbstractFloat = SU2{T}(conj(a.t1)*b.t1+a.t2*conj(b.t2),conj(a.t1)*b.t2-a.t2*conj(b.t1))
|
Base.:\(a::SU2{T},b::SU2{T}) where T <: AbstractFloat = SU2{T}(conj(a.t1)*b.t1+a.t2*conj(b.t2),conj(a.t1)*b.t2-a.t2*conj(b.t1))
|
||||||
|
|
||||||
struct SU2alg{T} <: Algebra
|
|
||||||
t1::T
|
|
||||||
t2::T
|
|
||||||
t3::T
|
|
||||||
end
|
|
||||||
SU2alg(x::T) where T <: AbstractFloat = SU2alg{T}(x,0.0,0.0)
|
|
||||||
SU2alg(v::Vector{T}) where T <: AbstractFloat = SU2alg{T}(v[1],v[2],v[3])
|
|
||||||
projalg(g::SU2{T}) where T <: AbstractFloat = SU2alg{T}(imag(g.t1), real(g.t2), imag(g.t2))
|
|
||||||
dot(a::SU2alg{T}, b::SU2alg{T}) where T <: AbstractFloat = a.t1*b.t1 + a.t2*b.t2 + a.t3*b.t3
|
|
||||||
norm(a::SU2alg{T}) where T <: AbstractFloat = sqrt(a.t1^2 + a.t2^2 + a.t3^2)
|
|
||||||
norm2(a::SU2alg{T}) where T <: AbstractFloat = a.t1^2 + a.t2^2 + a.t3^2
|
|
||||||
Base.zero(::Type{SU2alg{T}}) where T <: AbstractFloat = SU2alg{T}(zero(T),zero(T),zero(T))
|
|
||||||
Random.rand(rng::AbstractRNG, ::Random.SamplerType{SU2alg{T}}) where T <: AbstractFloat = SU2alg{T}(randn(rng,T),randn(rng,T),randn(rng,T))
|
|
||||||
|
|
||||||
Base.:+(a::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(a.t1,a.t2,a.t3)
|
|
||||||
Base.:-(a::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(-a.t1,-a.t2,-a.t3)
|
|
||||||
Base.:+(a::SU2alg{T},b::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(a.t1+b.t1,a.t2+b.t2,a.t3+b.t3)
|
|
||||||
Base.:-(a::SU2alg{T},b::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(a.t1-b.t1,a.t2-b.t2,a.t3-b.t3)
|
|
||||||
|
|
||||||
Base.:*(a::SU2alg{T},b::Number) where T <: AbstractFloat = SU2alg{T}(a.t1*b,a.t2*b,a.t3*b)
|
|
||||||
Base.:*(b::Number,a::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(a.t1*b,a.t2*b,a.t3*b)
|
|
||||||
Base.:/(a::SU2alg{T},b::Number) where T <: AbstractFloat = SU2alg{T}(a.t1/b,a.t2/b,a.t3/b)
|
|
||||||
|
|
||||||
function isgroup(a::SU2{T}) where T <: AbstractFloat
|
function isgroup(a::SU2{T}) where T <: AbstractFloat
|
||||||
tol = 1.0E-10
|
tol = 1.0E-10
|
||||||
if (abs2(a.t1) + abs2(a.t2) - 1.0 < 1.0E-10)
|
if (abs2(a.t1) + abs2(a.t2) - 1.0 < 1.0E-10)
|
||||||
|
@ -79,91 +48,3 @@ function isgroup(a::SU2{T}) where T <: AbstractFloat
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
"""
|
|
||||||
function Base.exp(a::T, t::Number=1) where {T <: Algebra}
|
|
||||||
|
|
||||||
Computes `exp(a)`
|
|
||||||
"""
|
|
||||||
function Base.exp(a::SU2alg{T}) where T <: AbstractFloat
|
|
||||||
|
|
||||||
rm = sqrt( a.t1^2+a.t2^2+a.t3^2 )/2.0
|
|
||||||
if (abs(rm) < 0.05)
|
|
||||||
rms = rm^2/2.0
|
|
||||||
ca = 1.0 - rms *(1.0 - (rms/6.0 )*(1.0 - rms/15.0))
|
|
||||||
sa = 0.5 - rms/6.0*(1.0 - (rms/10.0)*(1.0 - rms/21.0))
|
|
||||||
else
|
|
||||||
ca = CUDA.cos(rm)
|
|
||||||
sa = CUDA.sin(rm)/(2.0*rm)
|
|
||||||
end
|
|
||||||
|
|
||||||
t1 = complex(ca,sa*a.t1)
|
|
||||||
t2 = complex(sa*a.t2,sa*a.t3)
|
|
||||||
return SU2{T}(t1,t2)
|
|
||||||
end
|
|
||||||
|
|
||||||
function Base.exp(a::SU2alg{T}, t::T) where T <: AbstractFloat
|
|
||||||
|
|
||||||
rm = t*sqrt( a.t1^2+a.t2^2+a.t3^2 )/2.0
|
|
||||||
if (abs(rm) < 0.05)
|
|
||||||
rms = rm^2/2.0
|
|
||||||
ca = 1.0 - rms *(1.0 - (rms/6.0 )*(1.0 - rms/15.0))
|
|
||||||
sa = t*(0.5 - rms/6.0*(1.0 - (rms/10.0)*(1.0 - rms/21.0)))
|
|
||||||
else
|
|
||||||
ca = CUDA.cos(rm)
|
|
||||||
sa = t*CUDA.sin(rm)/(2.0*rm)
|
|
||||||
end
|
|
||||||
|
|
||||||
t1 = complex(ca,sa*a.t1)
|
|
||||||
t2 = complex(sa*a.t2,sa*a.t3)
|
|
||||||
return SU2{T}(t1,t2)
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
function expm(g::G, a::A) where {G <: Algebra, A <: Algebra}
|
|
||||||
|
|
||||||
Computes `exp(a)*g`
|
|
||||||
|
|
||||||
"""
|
|
||||||
function expm(g::SU2{T}, a::SU2alg{T}) where T <: AbstractFloat
|
|
||||||
|
|
||||||
rm = sqrt( a.t1^2+a.t2^2+a.t3^2 )/2.0
|
|
||||||
if (abs(rm) < 0.05)
|
|
||||||
rms = rm^2/2.0
|
|
||||||
ca = 1.0 - rms *(1.0 - (rms/6.0 )*(1.0 - rms/15.0))
|
|
||||||
sa = 0.5 - rms/6.0*(1.0 - (rms/10.0)*(1.0 - rms/21.0))
|
|
||||||
else
|
|
||||||
ca = CUDA.cos(rm)
|
|
||||||
sa = CUDA.sin(rm)/(2.0*rm)
|
|
||||||
end
|
|
||||||
|
|
||||||
t1 = complex(ca,sa*a.t1)*g.t1-complex(sa*a.t2,sa*a.t3)*conj(g.t2)
|
|
||||||
t2 = complex(ca,sa*a.t1)*g.t2+complex(sa*a.t2,sa*a.t3)*conj(g.t1)
|
|
||||||
return SU2{T}(t1,t2)
|
|
||||||
end
|
|
||||||
|
|
||||||
"""
|
|
||||||
function expm(g::SU2, a::SU2alg, t::Float64)
|
|
||||||
|
|
||||||
Computes `exp(t*a)*g`
|
|
||||||
|
|
||||||
"""
|
|
||||||
function expm(g::SU2{T}, a::SU2alg{T}, t::T) where T <: AbstractFloat
|
|
||||||
|
|
||||||
rm = t*sqrt( a.t1^2+a.t2^2+a.t3^2 )/2.0
|
|
||||||
if (abs(rm) < 0.05)
|
|
||||||
rms = rm^2/2.0
|
|
||||||
ca = 1.0 - rms *(1.0 - (rms/6.0 )*(1.0 - rms/15.0))
|
|
||||||
sa = t*(0.5 - rms/6.0*(1.0 - (rms/10.0)*(1.0 - rms/21.0)))
|
|
||||||
else
|
|
||||||
ca = CUDA.cos(rm)
|
|
||||||
sa = t*CUDA.sin(rm)/(2.0*rm)
|
|
||||||
end
|
|
||||||
|
|
||||||
t1 = complex(ca,sa*a.t1)*g.t1-complex(sa*a.t2,sa*a.t3)*conj(g.t2)
|
|
||||||
t2 = complex(ca,sa*a.t1)*g.t2+complex(sa*a.t2,sa*a.t3)*conj(g.t1)
|
|
||||||
return SU2{T}(t1,t2)
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
export SU2, SU2alg, inverse, dag, tr, projalg, expm, exp, norm, norm2, isgroup
|
|
||||||
|
|
|
@ -12,8 +12,8 @@
|
||||||
|
|
||||||
module Groups
|
module Groups
|
||||||
|
|
||||||
using Random
|
using CUDA, Random
|
||||||
import Base.:*, Base.:+, Base.:-,Base.:/,Base.:\,Base.one,Base.zero
|
import Base.:*, Base.:+, Base.:-,Base.:/,Base.:\,Base.exp,Base.one,Base.zero
|
||||||
import Random.rand
|
import Random.rand
|
||||||
|
|
||||||
abstract type Group end
|
abstract type Group end
|
||||||
|
@ -21,9 +21,16 @@ abstract type Algebra end
|
||||||
|
|
||||||
export Group, Algebra
|
export Group, Algebra
|
||||||
|
|
||||||
include("GroupSU2.jl")
|
##
|
||||||
|
# SU(2) and 2x2 matrix operations
|
||||||
|
##
|
||||||
|
include("SU2Types.jl")
|
||||||
export SU2, SU2alg
|
export SU2, SU2alg
|
||||||
|
|
||||||
|
include("GroupSU2.jl")
|
||||||
|
include("AlgebraSU2.jl")
|
||||||
|
## END SU(2)
|
||||||
|
|
||||||
##
|
##
|
||||||
# SU(3) and 3x3 matrix operations
|
# SU(3) and 3x3 matrix operations
|
||||||
##
|
##
|
||||||
|
|
26
src/Groups/SU2Types.jl
Normal file
26
src/Groups/SU2Types.jl
Normal file
|
@ -0,0 +1,26 @@
|
||||||
|
###
|
||||||
|
### "THE BEER-WARE LICENSE":
|
||||||
|
### Alberto Ramos wrote this file. As long as you retain this
|
||||||
|
### notice you can do whatever you want with this stuff. If we meet some
|
||||||
|
### day, and you think this stuff is worth it, you can buy me a beer in
|
||||||
|
### return. <alberto.ramos@cern.ch>
|
||||||
|
###
|
||||||
|
### file: SU2Types.jl
|
||||||
|
### created: Sun Oct 3 09:22:48 2021
|
||||||
|
###
|
||||||
|
|
||||||
|
struct SU2{T} <: Group
|
||||||
|
t1::Complex{T}
|
||||||
|
t2::Complex{T}
|
||||||
|
end
|
||||||
|
|
||||||
|
struct SU2alg{T} <: Algebra
|
||||||
|
t1::T
|
||||||
|
t2::T
|
||||||
|
t3::T
|
||||||
|
end
|
||||||
|
|
||||||
|
Base.zero(::Type{SU2alg{T}}) where T <: AbstractFloat = SU2alg{T}(zero(T),zero(T),zero(T))
|
||||||
|
Random.rand(rng::AbstractRNG, ::Random.SamplerType{SU2alg{T}}) where T <: AbstractFloat = SU2alg{T}(randn(rng,T),randn(rng,T),randn(rng,T))
|
||||||
|
Base.one(::Type{SU2{T}}) where T <: AbstractFloat = SU2{T}(one(T),zero(T))
|
||||||
|
Random.rand(rng::AbstractRNG, ::Random.SamplerType{SU2{T}}) where T <: AbstractFloat = exp(SU2alg{T}(randn(rng,T),randn(rng,T),randn(rng,T)))
|
Loading…
Add table
Add a link
Reference in a new issue