Merge branch 'master' into 'master'

Master

See merge request alramos/latticegpu.jl!5
This commit is contained in:
Alberto Ramos Martinez 2024-08-04 15:50:56 +00:00
commit 94f410b51f
23 changed files with 2674 additions and 804 deletions

View file

@ -1,7 +1,7 @@
# Dirac operator # Dirac operator
The module `Dirac` has the necessary stuctures and function The module `Dirac` has the necessary structures and functions
to simulate non-dynamical 4-dimensional Wilson fermions. to simulate non-dynamical 4-dimensional Wilson fermions.
There are two main data structures in this module, the structure [`DiracParam`](@ref) There are two main data structures in this module, the structure [`DiracParam`](@ref)
@ -18,7 +18,7 @@ DiracWorkspace
The workspace stores four fermion fields, namely `.sr`, `.sp`, `.sAp` and `.st`, used The workspace stores four fermion fields, namely `.sr`, `.sp`, `.sAp` and `.st`, used
for different purposes. If the representation is either `SU2fund` of `SU3fund`, an extra for different purposes. If the representation is either `SU2fund` of `SU3fund`, an extra
field with values in `U2alg`/`U3alg` is created to store the clover, used for the improvent. field with values in `U2alg`/`U3alg` is created to store the clover, used for the improvement.
## Functions ## Functions
@ -38,7 +38,7 @@ where $$m_0$$ and $$\theta$$ are respectively the values `.m0` and `.th` of [`Di
Note that $$|\theta(\mu)|=1$$ is not built into the code, so it should be imposed explicitly. Note that $$|\theta(\mu)|=1$$ is not built into the code, so it should be imposed explicitly.
Additionally, if |`dpar.csw`| > 1.0E-10, the clover term is assumed to be stored in `ymws.csw`, which Additionally, if |`dpar.csw`| > 1.0E-10, the clover term is assumed to be stored in `ymws.csw`, which
can be done via the [`Csw!`](@ref) function. In this case we have the SheikholeslamiWohlert (SW) term can be done via the [`Csw!`](@ref) function. In this case we have the Sheikholeslami-Wohlert (SW) term
in `Dw!`: in `Dw!`:
```math ```math
@ -53,7 +53,7 @@ improvement term
```math ```math
\delta D_w^{SF} = (c_t -1) (\delta_{x_4,a} \psi(\vec{x}) + \delta_{x_4,T-a} \psi(\vec{x})) \delta D_w^{SF} = (c_t -1) (\delta_{x_4,a} \psi(\vec{x}) + \delta_{x_4,T-a} \psi(\vec{x}))
``` ```
is added. Since the time-slice $$t=T$$ is not stored, this accounts to modifying the second is added. Since the time-slice $$t=T$$ is not stored, this accounts for modifying the second
and last time-slice. and last time-slice.
Note that the Dirac operator for SF boundary conditions assumes that the value of the field Note that the Dirac operator for SF boundary conditions assumes that the value of the field
@ -63,11 +63,6 @@ in the first time-slice is zero. To enforce this, we have the function
SF_bndfix! SF_bndfix!
``` ```
Note that this is not enforced in the Dirac operators, so if the field `so` does not satisfy SF
boundary conditions, it will not (in general) satisfy them after applying [`Dw!`](@ref)
or [`g5Dw!`](@ref). This function is called for the function [`DwdagDw!`](@ref), so in this case
`so` will always be a proper SF field after calling this function.
The function [`Csw!`](@ref) is used to store the clover in `dws.csw`. It is computed The function [`Csw!`](@ref) is used to store the clover in `dws.csw`. It is computed
according to the expression according to the expression
@ -97,8 +92,8 @@ F[b,4,r] \to F_{31}(b,r) ,\quad F[b,5,r] \to F_{32}(b,r) ,\quad F[b,6,r] \to F_{
``` ```
where $$(b,r)$$ labels the lattice points as explained in the module `Space` where $$(b,r)$$ labels the lattice points as explained in the module `Space`
The function [`pfrandomize!`](@ref), userfull for stochastic sources, is also present. It The function [`pfrandomize!`](@ref), userful for stochastic sources, is also present. It
randomizes a fermion field either in all the space or in a specifit time-slice. randomizes a fermion field, either in all the space or in a specific time-slice.
The generic interface of these functions reads The generic interface of these functions reads

View file

@ -1,16 +1,18 @@
# Lattice fields # Lattice fields
The module `Fields` include simple routines to define a few typical The module `Fields` includes simple routines to define a few typical
fields. Fields are simple `CuArray` types with special memory fields. Fields are simple `CuArray` types with special memory
layout. A field always has an associated elemental type (i.e. for layout. A field always has an associated elemental type (i.e. for
gauge fields `SU3`, for scalar fields `Float64`). We have: gauge fields `SU3`, for scalar fields `Float64`). We have:
- scalar fields: One elemental type in each spacetime point. - Scalar fields: One elemental type in each spacetime point.
- vector field: One elemental type at each spacetime point and - Vector field: One elemental type at each spacetime point and
direction. direction.
- `N` scalar fields: `N` elemental types at each spacetime point. - `N` scalar fields: `N` elemental types at each spacetime point.
- Tensor fields: One elemental type at each spacetime point and
plane. They are to be thought of as symmetric tensors.
Fields can have **naturaL indexing**, where the memory layout follows Fields can have **natural indexing**, where the memory layout follows
the point-in-block and block indices (see the point-in-block and block indices (see
[`SpaceParm`](@ref)). Fields can also have **lexicographic indexing**, [`SpaceParm`](@ref)). Fields can also have **lexicographic indexing**,
where points are labelled by a D-dimensional index (see [`scalar_field_point`](@ref)). where points are labelled by a D-dimensional index (see [`scalar_field_point`](@ref)).
@ -21,6 +23,7 @@ where points are labelled by a D-dimensional index (see [`scalar_field_point`](@
```@docs ```@docs
scalar_field scalar_field
vector_field vector_field
tensor_field
nscalar_field nscalar_field
scalar_field_point scalar_field_point
``` ```

View file

@ -1,7 +1,7 @@
# Groups and Algebras # Groups and Algebras
The module `Groups` contain generic data types to deal with group and The module `Groups` contains generic data types to deal with group and
algebra elements. Group elements $$g\in SU(N)$$ are represented in algebra elements. Group elements $$g\in SU(N)$$ are represented in
some compact notation. For the case $$N=2$$ we use two complex numbers some compact notation. For the case $$N=2$$ we use two complex numbers
(Caley-Dickson representation, i.e. $$g=(z_1,z_2)$$ with (Caley-Dickson representation, i.e. $$g=(z_1,z_2)$$ with
@ -79,7 +79,7 @@ elements. The objective is to get an idea on how group operations
We can generate some random group elements. We can generate some random group elements.
```@repl exs ```@repl exs
# Generate random groups elements, # Generate random groups elements,
# check they are actually from the grup # check they are actually from the group
g = rand(SU2{Float64}) g = rand(SU2{Float64})
println("Are we in a group?: ", isgroup(g)) println("Are we in a group?: ", isgroup(g))
g = rand(SU3{Float64}) g = rand(SU3{Float64})

View file

@ -29,13 +29,15 @@ is given by $$|$$``dws.sr``$$|^2$$.
## Propagators.jl ## Propagators.jl
In this file, we define a couple of useful functions to obtain certain In this file, we define some useful functions to obtain certain
propagators. propagators.
```@docs ```@docs
propagator! propagator!
``` ```
Note that the indexing in Julia starts at 1, so the first tiime slice is t=1.
Internally, this function solves the equation Internally, this function solves the equation
```math ```math

View file

@ -6,7 +6,7 @@ which is a NS-tuple with values in G.
The functions `norm`, `norm2`, `dot`, `*`, `/`, `/`, `+`, `-`, `imm` and `mimm`, The functions `norm`, `norm2`, `dot`, `*`, `/`, `/`, `+`, `-`, `imm` and `mimm`,
if defined for G, are extended to Spinor{NS,G} for general NS. if defined for G, are extended to Spinor{NS,G} for general NS.
For the 4d case where NS = 4 there are some specific functions to implement different For the 4D case, where NS = 4, there are some specific functions to implement different
operations with the gamma matrices. The convention for these matrices is operations with the gamma matrices. The convention for these matrices is
@ -79,7 +79,6 @@ using LatticeGPU # hide
``` ```
```@repl exs ```@repl exs
spin = Spinor{4,Complex{Float64}}((1.0,im*0.5,2.3,0.0)) spin = Spinor{4,Complex{Float64}}((1.0,im*0.5,2.3,0.0))
println(spin)
println(dmul(Gamma{4},spin)) println(dmul(Gamma{4},spin))
println(pmul(Pgamma{2,-1},spin)) println(pmul(Pgamma{2,-1},spin))

View file

@ -105,500 +105,6 @@ struct DiracWorkspace{T}
end end
export DiracWorkspace, DiracParam
"""
function Csw!(dws, U, gp, lp::SpaceParm)
Computes the clover and stores it in dws.csw.
"""
function Csw!(dws, U, gp, lp::SpaceParm{4,6,B,D}) where {B,D}
@timeit "Csw computation" begin
for i in 1:Int(lp.npls)
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_csw!(dws.csw, U, gp.Ubnd, i, lp)
end
end
end
return nothing
end
function krnl_csw!(csw::AbstractArray{T}, U, Ubnd, ipl, lp::SpaceParm{4,M,B,D}) where {T,M,B,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[4]
id1, id2 = lp.plidx[ipl]
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4)
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
bd1, rd1 = dw((b, r), id1, lp)
bd2, rd2 = dw((b, r), id2, lp)
bdd, rdd = dw((bd1, rd1), id2, lp)
bud, rud = dw((bu1, ru1), id2, lp)
bdu, rdu = up((bd1, rd1), id2, lp)
if SFBC && (it == lp.iL[end])
gt1 = Ubnd[id2]
gt2 = Ubnd[id2]
else
gt1 = U[bu1,id2,ru1]
gt2 = U[bud,id2,rud]
end
M1 = U[b,id1,r]*gt1/(U[b,id2,r]*U[bu2,id1,ru2])
M2 = (U[bd2,id2,rd2]\(U[bd2,id1,rd2]*gt2))/U[b,id1,r]
M3 = (U[bdd,id2,rdd]*U[bd1,id1,rd1])\(U[bdd,id1,rdd]*U[bd2,id2,rd2])
M4 = (U[b,id2,r]/(U[bd1,id2,rd1]*U[bdu,id1,rdu]))*U[bd1,id1,rd1]
if !(SFBC && (it == 1))
csw[b,ipl,r] = 0.125*(antsym(M1)+antsym(M2)+antsym(M3)+antsym(M4))
end
end
return nothing
end
"""
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes the Dirac operator (with the Wilson term) `\`\``D_w``\`\` with gauge field U and parameters `dpar` of the field `si` and stores it in `so`.
If `dpar.csw` is different from zero, the clover term should be stored in `dws.csw` via the Csw! function and is automatically included in the operator.
"""
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D}
if abs(dpar.csw) > 1.0E-10
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp)
end
end
else
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, lp)
end
end
end
return nothing
end
function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, lp::SpaceParm{4,6,B,D}) where {B,D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]+ im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
end
return nothing
end
function krnl_Dw!(so, U, si, m0, tm, th, lp::SpaceParm{4,6,B,D}) where {B,D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r])
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
end
return nothing
end
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
else
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
end
return nothing
end
function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
return nothing
end
function krnl_Dw!(so, U, si, m0, tm, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r])
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
return nothing
end
"""
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes \`\` \\gamma_5 \`\` times the Dirac operator (with the Wilson term) with gauge field U and parameters `dpar` of the field `si` and stores it in `so`.
If `dpar.csw` is different from zero, the clover term should be stored in `dws.csw` via the Csw! function and is automatically included in the operator.
"""
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D}
if abs(dpar.csw) > 1.0E-10
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp)
end
end
else
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, lp)
end
end
end
return nothing
end
function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, lp::SpaceParm{4,6,B,D}) where {B,D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r]
end
return nothing
end
function krnl_g5Dw!(so, U, si, m0, tm, th, lp::SpaceParm{4,6,B,D}) where {B,D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r]
end
return nothing
end
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
else
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
end
return nothing
end
function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r]
return nothing
end
function krnl_g5Dw!(so, U, si, m0, tm, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r]
return nothing
end
"""
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Applies the operator \`\` \\gamma_5 D_w \`\` twice to `si` and stores the result in `so`. This is equivalent to appling the operator \`\` D_w^\\dagger D_w \`\`
The Dirac operator is the same as in the functions `Dw!` and `g5Dw!`
"""
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
SF_bndfix!(dws.st,lp)
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
SF_bndfix!(so,lp)
end
else
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
SF_bndfix!(dws.st,lp)
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, dpar.ct, lp)
end
end
SF_bndfix!(so,lp)
end
end
return nothing
end
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D}
if abs(dpar.csw) > 1.0E-10
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp)
end
end
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, lp)
end
end
end
else
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, lp)
end
end
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, lp)
end
end
end
end
return nothing
end
""" """
function mtwmdpar(dpar::DiracParam) function mtwmdpar(dpar::DiracParam)
@ -610,105 +116,19 @@ function mtwmdpar(dpar::DiracParam{P,R}) where {P,R}
end end
""" export DiracWorkspace, DiracParam, mtwmdpar
SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}})
Sets all the values of `sp` in the first time slice to zero. include("Diracfields.jl")
""" export SF_bndfix!, Csw!, pfrandomize!
function SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
@timeit "SF boundary fix" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_sfbndfix!(sp, lp)
end
end
return nothing
end
function krnl_sfbndfix!(sp,lp::SpaceParm)
b=Int64(CUDA.threadIdx().x)
r=Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) == 1)
sp[b,r] = 0.0*sp[b,r]
end
return nothing
end
"""
function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund / SU2fund {T}}}, lp::SpaceParm, t::Int64 = 0)
Randomizes the SU2fund / SU3fund fermion field. If the argument t is present, it only randomizes that time-slice.
"""
function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund{T}}}, lp::SpaceParm, t::Int64 = 0) where {T}
@timeit "Randomize pseudofermion field" begin
p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4) # complex generation not suported for Julia 1.5.4
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su3!(f,p,lp,t)
end
end
return nothing
end
function krnl_assign_pf_su3!(f::AbstractArray, p , lp::SpaceParm, t::Int64)
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
if t == 0
f[b,r] = Spinor(map(x->SU3fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2],
x[b,3,r,1] + im* x[b,3,r,2]),p))
elseif point_time((b,r),lp) == t
f[b,r] = Spinor(map(x->SU3fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2],
x[b,3,r,1] + im* x[b,3,r,2]),p))
end
end
return nothing
end
function pfrandomize!(f::AbstractArray{Spinor{4, SU2fund{T}}},lp::SpaceParm, t::Int64=0) where {T}
@timeit "Randomize pseudofermion field" begin
p = ntuple(i->CUDA.randn(T, lp.bsz, 2, lp.rsz,2),4) # complex generation not suported for Julia 1.5.4
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su2!(f,p,lp,t)
end
end
return nothing
end
function krnl_assign_pf_su2!(f::AbstractArray, p , lp::SpaceParm, t::Int64)
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
if t == 0
f[b,r] = Spinor(map(x->SU2fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2]),p))
elseif point_time((b,r),lp) == t
f[b,r] = Spinor(map(x->SU2fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2]),p))
end
end
return nothing
end
export Dw!, g5Dw!, DwdagDw!, SF_bndfix!, Csw!, pfrandomize!, mtwmdpar
include("Diracoper.jl")
export Dw!, g5Dw!, DwdagDw!
include("DiracIO.jl") include("DiracIO.jl")
export read_prop, save_prop, read_dpar export read_prop, save_prop, read_dpar
include("Diracflow.jl")
export Nablanabla!, Dslash_sq!, flw, backflow
end end

211
src/Dirac/Diracfields.jl Normal file
View file

@ -0,0 +1,211 @@
"""
function Csw!(dws, U, gp, lp::SpaceParm)
Computes the clover and stores it in dws.csw.
"""
function Csw!(dws, U, gp, lp::SpaceParm{4,6,B,D}) where {B,D}
@timeit "Csw computation" begin
for i in 1:Int(lp.npls)
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_csw!(dws.csw, U, gp.Ubnd, i, lp)
end
end
end
return nothing
end
function krnl_csw!(csw::AbstractArray{T}, U, Ubnd, ipl, lp::SpaceParm{4,M,B,D}) where {T,M,B,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[4]
id1, id2 = lp.plidx[ipl]
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4)
OBC = (B == BC_OPEN) && ((it == 1) || (it == lp.iL[end]))
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
bd1, rd1 = dw((b, r), id1, lp)
bd2, rd2 = dw((b, r), id2, lp)
bdd, rdd = dw((bd1, rd1), id2, lp)
bud, rud = dw((bu1, ru1), id2, lp)
bdu, rdu = up((bd1, rd1), id2, lp)
if SFBC && (it == lp.iL[end])
gt1 = Ubnd[id2]
gt2 = Ubnd[id2]
else
gt1 = U[bu1,id2,ru1]
gt2 = U[bud,id2,rud]
end
M1 = U[b,id1,r]*gt1/(U[b,id2,r]*U[bu2,id1,ru2])
M2 = (U[bd2,id2,rd2]\(U[bd2,id1,rd2]*gt2))/U[b,id1,r]
M3 = (U[bdd,id2,rdd]*U[bd1,id1,rd1])\(U[bdd,id1,rdd]*U[bd2,id2,rd2])
M4 = (U[b,id2,r]/(U[bd1,id2,rd1]*U[bdu,id1,rdu]))*U[bd1,id1,rd1]
if !(SFBC && (it == 1)) && !OBC
csw[b,ipl,r] = 0.125*(antsym(M1)+antsym(M2)+antsym(M3)+antsym(M4))
end
end
return nothing
end
"""
SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}})
Sets all the values of `sp` in the first time slice to zero.
"""
function SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
@timeit "SF boundary fix" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_sfbndfix!(sp, lp)
end
end
return nothing
end
function krnl_sfbndfix!(sp,lp::SpaceParm)
b=Int64(CUDA.threadIdx().x)
r=Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) == 1)
sp[b,r] = 0.0*sp[b,r]
end
return nothing
end
"""
SF_bndfix!(sp, lp::SpaceParm{4,6,BC_OPEN,D})
Sets all the values of `sp` in the first and last time slice to zero.
"""
function SF_bndfix!(sp, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
@timeit "SF boundary fix" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_opbndfix!(sp, lp)
end
end
return nothing
end
function krnl_opbndfix!(sp,lp::SpaceParm)
b=Int64(CUDA.threadIdx().x)
r=Int64(CUDA.blockIdx().x)
if ((point_time((b,r),lp) == 1) || (point_time((b,r),lp) == lp.iL[end]))
sp[b,r] = 0.0*sp[b,r]
end
return nothing
end
"""
function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund / SU2fund {T}}}, lp::SpaceParm, t::Int64 = 0)
Randomizes the SU2fund / SU3fund fermion field. If the argument t is present, it only randomizes that time-slice.
"""
function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund{T}}}, lp::SpaceParm{4,6,BC_PERIODIC,D}, t::Int64 = 0) where {T,D}
@timeit "Randomize pseudofermion field" begin
p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4)./sqrt(2) # complex generation not suported for Julia 1.5.4
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su3!(f,p,lp,t)
end
end
return nothing
end
function pfrandomize!(f::AbstractArray{Spinor{4, SU3fund{T}}}, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D},SpaceParm{4,6,BC_OPEN,D}}, t::Int64 = 0) where {T,D}
@timeit "Randomize pseudofermion field" begin
p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4)./sqrt(2) # complex generation not suported for Julia 1.5.4
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su3!(f,p,lp,t)
end
end
SF_bndfix!(f,lp)
return nothing
end
function krnl_assign_pf_su3!(f::AbstractArray, p , lp::SpaceParm, t::Int64)
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
if t == 0
f[b,r] = Spinor(map(x->SU3fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2],
x[b,3,r,1] + im* x[b,3,r,2]),p))
elseif point_time((b,r),lp) == t
f[b,r] = Spinor(map(x->SU3fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2],
x[b,3,r,1] + im* x[b,3,r,2]),p))
end
end
return nothing
end
function pfrandomize!(f::AbstractArray{Spinor{4, SU2fund{T}}}, lp::SpaceParm{4,6,BC_PERIODIC,D}, t::Int64 = 0) where {T,D}
@timeit "Randomize pseudofermion field" begin
p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4)./sqrt(2) # complex generation not suported for Julia 1.5.4
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su2!(f,p,lp,t)
end
end
return nothing
end
function pfrandomize!(f::AbstractArray{Spinor{4, SU2fund{T}}}, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D},SpaceParm{4,6,BC_OPEN,D}}, t::Int64 = 0) where {T,D}
@timeit "Randomize pseudofermion field" begin
p = ntuple(i->CUDA.randn(T, lp.bsz, 3, lp.rsz,2),4)./sqrt(2) # complex generation not suported for Julia 1.5.4
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_assign_pf_su2!(f,p,lp,t)
end
end
SF_bndfix!(f,lp)
return nothing
end
function krnl_assign_pf_su2!(f::AbstractArray, p , lp::SpaceParm, t::Int64)
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
if t == 0
f[b,r] = Spinor(map(x->SU2fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2]),p))
elseif point_time((b,r),lp) == t
f[b,r] = Spinor(map(x->SU2fund(x[b,1,r,1] + im* x[b,1,r,2],
x[b,2,r,1] + im* x[b,2,r,2]),p))
end
end
return nothing
end

456
src/Dirac/Diracflow.jl Normal file
View file

@ -0,0 +1,456 @@
import ..YM.flw, ..YM.force_gauge, ..YM.flw_adapt
function flw(U, psi, int::FlowIntr{NI,T}, ns::Int64, eps, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) where {NI,T}
@timeit "Integrating flow equations" begin
for i in 1:ns
force_gauge(ymws, U, int.c0, 1, gp, lp)
if int.add_zth
add_zth_term(ymws::YMworkspace, U, lp)
end
Nablanabla!(dws.sAp, U, psi, dpar, dws, lp)
psi .= psi + 2*int.r*eps*dws.sAp
ymws.mom .= ymws.frc1
U .= expm.(U, ymws.mom, 2*eps*int.r)
for k in 1:NI
force_gauge(ymws, U, int.c0, 1, gp, lp)
if int.add_zth
add_zth_term(ymws::YMworkspace, U, lp)
end
Nablanabla!(dws.sp, U, psi, dpar, dws, lp)
dws.sAp .= int.e0[k].*dws.sAp .+ int.e1[k].*dws.sp
psi .= psi + 2*eps*dws.sAp
ymws.mom .= int.e0[k].*ymws.mom .+ int.e1[k].*ymws.frc1
U .= expm.(U, ymws.mom, 2*eps)
end
end
end
return nothing
end
flw(U, psi, int::FlowIntr{NI,T}, ns::Int64, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) where {NI,T} = flw(U, psi, int::FlowIntr{NI,T}, ns::Int64, int.eps, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace)
"""
function backflow(psi, U, Dt, nsave::Int64, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace)
Performs one step back in flow time for the fermion field, according to 1302.5246. The fermion field must me that of the time-slice Dt and is flowed back to the first time-slice
nsave is the total number of gauge fields saved in the process
"""
function backflow(psi, U, Dt, maxnsave::Int64, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace)
int = wfl_rk3(Float64,0.01,1.0) # Default integrator, it has to be order 3 rk but in can be zfl
@timeit "Backflow integration" begin
@timeit "GPU to CPU" U0 = Array(U)
nt,eps_all = flw_adapt(U, int, Dt, gp, lp, ymws)
nsave = min(maxnsave,nt)
nsave != 0 ? dsave = Int64(floor(nt/nsave)) : dsave = nt
Usave = Vector{typeof(U0)}(undef,nsave)
@timeit "CPU to GPU" copyto!(U,U0)
for i in 1:(dsave*nsave)
flw(U, int, 1, eps_all[i], gp, lp, ymws)
(i%dsave)==0 ? Usave[Int64(i/dsave)] = Array(U) : nothing
end
for j in (nt%nsave):-1:1
@timeit "CPU to GPU" copyto!(U,Usave[end])
for k in 1:j-1
flw(U, int, 1, eps_all[nsave*dsave + k], gp, lp, ymws)
end
bflw_step!(psi, U, eps_all[nsave*dsave + j], int::FlowIntr, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace)
end
for i in (nsave-1):-1:1
for j in dsave:-1:1
@timeit "CPU to GPU" copyto!(U,Usave[i])
for k in 1:j-1
flw(U, int, 1, eps_all[i*dsave + k], gp, lp, ymws)
end
bflw_step!(psi, U, eps_all[i*dsave + j], int::FlowIntr, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace)
end
end
@timeit "CPU to GPU" copyto!(U,U0)
for j in dsave:-1:1
@timeit "CPU to GPU" copyto!(U,U0)
for k in 1:j-1
flw(U, int, 1, eps_all[k], gp, lp, ymws)
end
bflw_step!(psi, U, eps_all[j], int::FlowIntr, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace)
end
@timeit "CPU to GPU" copyto!(U,U0)
end
return nothing
end
"""
function bflw_step!(U, psi, eps, int::FlowIntr, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace)
Performs ONE backstep in psi, from t to t-\eps. U is supposed to be the one in t-\eps and is left unchanged. So far, int has to be rk4
"""
function bflw_step!(psi, U, eps, int::FlowIntr, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace)
@timeit "Backflow step" begin
V = copy(U)
V .= U
force_gauge(ymws, U, int.c0, 1, gp, lp)
if int.add_zth
add_zth_term(ymws::YMworkspace, U, lp)
end
ymws.mom .= ymws.frc1
U .= expm.(U, ymws.mom, 2*eps*int.r)
force_gauge(ymws, U, int.c0, 1, gp, lp)
if int.add_zth
add_zth_term(ymws::YMworkspace, U, lp)
end
ymws.mom .= int.e0[1].*ymws.mom .+ int.e1[1].*ymws.frc1
U .= expm.(U, ymws.mom, 2*eps)
Nablanabla!(dws.sp, U, 0.75*2*eps*psi, dpar, dws, lp)
U .= V
force_gauge(ymws, U, int.c0, 1, gp, lp)
if int.add_zth
add_zth_term(ymws::YMworkspace, U, lp)
end
U .= expm.(U, ymws.frc1, 2*eps*int.r)
Nablanabla!(dws.sAp, U, 2*eps*dws.sp, dpar, dws, lp)
dws.sAp .= psi + (8/9)*dws.sAp
U .= V
Nablanabla!(psi, U, 2*eps*(dws.sAp - (8/9)*dws.sp), dpar, dws, lp)
psi .= (1/4)*psi + dws.sp + dws.sAp
end
return nothing
end
function flw_adapt(U, psi, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) where {NI,T}
eps = epsini
dt = tend
nstp = 0
eps_all = Vector{T}(undef,0)
while true
ns = convert(Int64, floor(dt/eps))
if ns > 10
flw(U, psi, int, 9, eps, gp, dpar, lp, ymws, dws)
ymws.U1 .= U
flw(U, psi, int, 1, eps, gp, dpar, lp, ymws, dws)
flw(ymws.U1, int, 2, eps/2, gp, lp, ymws)
dt = dt - 10*eps
nstp = nstp + 10
push!(eps_all,ntuple(i->eps,10)...)
# adjust step size
ymws.U1 .= ymws.U1 ./ U
maxd = CUDA.mapreduce(dev_one, max, ymws.U1, init=zero(tend))
eps = min(int.max_eps, 2*eps, int.sft_fac*eps*(int.tol/maxd)^(one(tend)/3))
else
flw(U, psi, int, ns, eps, gp, dpar, lp, ymws, dws)
dt = dt - ns*eps
push!(eps_all,ntuple(i->eps,ns)...)
push!(eps_all,dt)
flw(U, psi, int, 1, dt, gp, dpar, lp, ymws, dws)
dt = zero(tend)
nstp = nstp + ns + 1
end
if dt == zero(tend)
break
end
end
return nstp, eps_all
end
flw_adapt(U, psi, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, dpar::DiracParam, lp::SpaceParm, ymws::YMworkspace, dws::DiracWorkspace) where {NI,T} = flw_adapt(U, psi, int, tend, int.eps_ini, gp, dpar, lp, ymws, dws)
"""
function Nablanabla!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes /`/` \\nabla^* \\nabla /`/` `si` and stores it in `si`.
"""
function Nablanabla!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
@timeit "Laplacian" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Nablanabla(so, U, si, dpar.th, lp)
end
end
return nothing
end
function Nablanabla!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D},SpaceParm{4,6,BC_OPEN,D}}) where {D}
SF_bndfix!(si,lp)
@timeit "Laplacian" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Nablanabla(so, U, si, dpar.th, lp)
end
end
SF_bndfix!(so,lp)
return nothing
end
function krnl_Nablanabla(so, U, si, th, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
@inbounds begin
if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end]))
so[b,r] = -4*si[b,r]
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
so[b,r] += 0.5*( th[1] * (U[b,1,r]*si[bu1,ru1]) +conj(th[1]) * (U[bd1,1,rd1]\si[bd1,rd1]) +
th[2] * (U[b,2,r]*si[bu2,ru2]) +conj(th[2]) * (U[bd2,2,rd2]\si[bd2,rd2]) +
th[3] * (U[b,3,r]*si[bu3,ru3]) +conj(th[3]) * (U[bd3,3,rd3]\si[bd3,rd3]) +
th[4] * (U[b,4,r]*si[bu4,ru4]) +conj(th[4]) * (U[bd4,4,rd4]\si[bd4,rd4]) )
end
end
return nothing
end
function krnl_Nablanabla(so, U, si, th, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
@inbounds begin
so[b,r] = -4*si[b,r]
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
so[b,r] += 0.5*( th[1] * (U[b,1,r]*si[bu1,ru1]) +conj(th[1]) * (U[bd1,1,rd1]\si[bd1,rd1]) +
th[2] * (U[b,2,r]*si[bu2,ru2]) +conj(th[2]) * (U[bd2,2,rd2]\si[bd2,rd2]) +
th[3] * (U[b,3,r]*si[bu3,ru3]) +conj(th[3]) * (U[bd3,3,rd3]\si[bd3,rd3]) +
th[4] * (U[b,4,r]*si[bu4,ru4]) +conj(th[4]) * (U[bd4,4,rd4]\si[bd4,rd4]) )
end
return nothing
end
function krnl_Nablanabla(so, U, si, th, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
@inbounds begin
if (point_time((b,r),lp) != 1)
so[b,r] = -4*si[b,r]
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
so[b,r] += 0.5*( th[1] * (U[b,1,r]*si[bu1,ru1]) +conj(th[1]) * (U[bd1,1,rd1]\si[bd1,rd1]) +
th[2] * (U[b,2,r]*si[bu2,ru2]) +conj(th[2]) * (U[bd2,2,rd2]\si[bd2,rd2]) +
th[3] * (U[b,3,r]*si[bu3,ru3]) +conj(th[3]) * (U[bd3,3,rd3]\si[bd3,rd3]) +
th[4] * (U[b,4,r]*si[bu4,ru4]) +conj(th[4]) * (U[bd4,4,rd4]\si[bd4,rd4]) )
end
end
return nothing
end
export Nablanabla!, flw, backflow, flw_adapt, bflw_step!
"""
function Dslash_sq!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes /`/` //slashed{D}^2 si /`/` ans stores it in `si`.
"""
function Dslash_sq!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D}
@timeit "DwdagDw" begin
@timeit "g5Dslsh" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dslsh!(dws.st, U, si, dpar.th, lp)
end
end
if abs(dpar.csw) > 1.0E-10
@timeit "Dw_improvement" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dslsh_impr!(dws.st, dws.csw, dpar.csw, si, lp)
end
end
end
@timeit "g5Dslsh" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dslsh!(so, U, dws.st, dpar.th, lp)
end
end
if abs(dpar.csw) > 1.0E-10
@timeit "Dw_improvement" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dslsh_impr!(so, dws.csw, dpar.csw, dws.st, lp)
end
end
end
end
return nothing
end
function krnl_g5Dslsh!(so, U, si, th, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
@inbounds begin
so[b,r] = 4*si[b,r]
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
so[b,r] = dmul(Gamma{5}, so[b,r])
end
end
return nothing
end
function krnl_g5Dslsh!(so, U, si, th, lp::SpaceParm{4,6,B,D}) where {D,B}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
@inbounds begin
so[b,r] = 4*si[b,r]
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
so[b,r] = dmul(Gamma{5}, so[b,r])
end
return nothing
end
function krnl_g5Dslsh_impr!(so, Fcsw, csw, si, lp::SpaceParm{4,6,B,D}) where {B,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x);
r = Int64(CUDA.blockIdx().x)
so[b,r] += 0.5*csw*im*dmul(Gamma{5},( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
-Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) - Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) - Fcsw[b,6,r]*dmul(Gamma{13},si[b,r])))
end
return nothing
end
function krnl_g5Dslsh_impr!(so, Fcsw, csw, si, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
@inbounds begin
b = Int64(CUDA.threadIdx().x);
r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
so[b,r] += 0.5*csw*im*dmul(Gamma{5},( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
-Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) - Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) - Fcsw[b,6,r]*dmul(Gamma{13},si[b,r])))
end
return nothing
end
end

667
src/Dirac/Diracoper.jl Normal file
View file

@ -0,0 +1,667 @@
## OPEN
"""
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes the Dirac operator (with the Wilson term) `\`\``D_w``\`\` with gauge field U and parameters `dpar` of the field `si` and stores it in `so`.
If `dpar.csw` is different from zero, the clover term should be stored in `dws.csw` via the Csw! function and is automatically included in the operator.
"""
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
SF_bndfix!(si,lp)
if abs(dpar.csw) > 1.0E-10
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
else
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
end
SF_bndfix!(so,lp)
return nothing
end
function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
# The field si is assumed to be zero at t = 0,T
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end]))
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == (lp.iL[4]-1))
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
return nothing
end
function krnl_Dw!(so, U, si, m0, tm, th, ct, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
# The field si is assumed to be zero at t = 0,T
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end]))
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r])
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == (lp.iL[4]-1))
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
return nothing
end
"""
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes \`\` \\gamma_5 \`\` times the Dirac operator (with the Wilson term) with gauge field U and parameters `dpar` of the field `si` and stores it in `so`.
If `dpar.csw` is different from zero, the clover term should be stored in `dws.csw` via the Csw! function and is automatically included in the operator.
"""
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
SF_bndfix!(si,lp)
if abs(dpar.csw) > 1.0E-10
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
else
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
end
SF_bndfix!(so,lp)
return nothing
end
function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
# The field si is assumed to be zero at t = 0,T
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end]))
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == (lp.iL[4]-1))
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r]
return nothing
end
function krnl_g5Dw!(so, U, si, m0, tm, th, ct, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
# The field si is assumed to be zero at t = 0,T
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if ((point_time((b,r),lp) != 1) && (point_time((b,r),lp) != lp.iL[end]))
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == (lp.iL[4]-1))
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r]
return nothing
end
"""
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Applies the operator \`\` \\gamma_5 D_w \`\` twice to `si` and stores the result in `so`. This is equivalent to appling the operator \`\` D_w^\\dagger D_w \`\`
The Dirac operator is the same as in the functions `Dw!` and `g5Dw!`
"""
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_OPEN,D}) where {D}
SF_bndfix!(si,lp)
if abs(dpar.csw) > 1.0E-10
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
SF_bndfix!(dws.st,lp)
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
SF_bndfix!(so,lp)
end
else
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
SF_bndfix!(dws.st,lp)
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, dpar.ct, lp)
end
end
SF_bndfix!(so,lp)
end
end
return nothing
end
## PERDIODIC
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp)
end
end
else
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, lp)
end
end
end
return nothing
end
function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]+ im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
end
return nothing
end
function krnl_Dw!(so, U, si, m0, tm, th, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r])
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
end
return nothing
end
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp)
end
end
else
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, lp)
end
end
end
return nothing
end
function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r]
end
return nothing
end
function krnl_g5Dw!(so, U, si, m0, tm, th, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r]
end
return nothing
end
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,BC_PERIODIC,D}) where {D}
if abs(dpar.csw) > 1.0E-10
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, lp)
end
end
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, lp)
end
end
end
else
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, lp)
end
end
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, lp)
end
end
end end
return nothing
end
## SF
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
SF_bndfix!(si,lp)
if abs(dpar.csw) > 1.0E-10
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
else
@timeit "Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
end
SF_bndfix!(so,lp)
return nothing
end
function krnl_Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r]) + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
return nothing
end
function krnl_Dw!(so, U, si, m0, tm, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + im*tm*dmul(Gamma{5},si[b,r])
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
return nothing
end
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
SF_bndfix!(si,lp)
if abs(dpar.csw) > 1.0E-10
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
else
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
end
SF_bndfix!(so,lp)
return nothing
end
function krnl_g5Dwimpr!(so, U, si, Fcsw, m0, tm, th, csw, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r] + 0.5*csw*im*( Fcsw[b,1,r]*dmul(Gamma{10},si[b,r]) + Fcsw[b,2,r]*dmul(Gamma{11},si[b,r]) + Fcsw[b,3,r]*dmul(Gamma{12},si[b,r])
+Fcsw[b,4,r]*dmul(Gamma{15},si[b,r]) + Fcsw[b,5,r]*dmul(Gamma{14},si[b,r]) + Fcsw[b,6,r]*dmul(Gamma{13},si[b,r]))
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
so[b,r] = dmul(Gamma{5}, so[b,r])+ im*tm*si[b,r]
return nothing
end
function krnl_g5Dw!(so, U, si, m0, tm, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
# The field si is assumed to be zero at t = 0
b = Int64(CUDA.threadIdx().x); r = Int64(CUDA.blockIdx().x)
if (point_time((b,r),lp) != 1)
bu1, ru1 = up((b,r), 1, lp)
bd1, rd1 = dw((b,r), 1, lp)
bu2, ru2 = up((b,r), 2, lp)
bd2, rd2 = dw((b,r), 2, lp)
bu3, ru3 = up((b,r), 3, lp)
bd3, rd3 = dw((b,r), 3, lp)
bu4, ru4 = up((b,r), 4, lp)
bd4, rd4 = dw((b,r), 4, lp)
@inbounds begin
so[b,r] = (4+m0)*si[b,r]
so[b,r] -= 0.5*(th[1]*gpmul(Pgamma{1,-1},U[b,1,r],si[bu1,ru1]) +conj(th[1])*gdagpmul(Pgamma{1,+1},U[bd1,1,rd1],si[bd1,rd1]) +
th[2]*gpmul(Pgamma{2,-1},U[b,2,r],si[bu2,ru2]) +conj(th[2])*gdagpmul(Pgamma{2,+1},U[bd2,2,rd2],si[bd2,rd2]) +
th[3]*gpmul(Pgamma{3,-1},U[b,3,r],si[bu3,ru3]) +conj(th[3])*gdagpmul(Pgamma{3,+1},U[bd3,3,rd3],si[bd3,rd3]) +
th[4]*gpmul(Pgamma{4,-1},U[b,4,r],si[bu4,ru4]) +conj(th[4])*gdagpmul(Pgamma{4,+1},U[bd4,4,rd4],si[bd4,rd4]) )
if (point_time((b,r),lp) == 2) || (point_time((b,r),lp) == lp.iL[4])
so[b,r] += (ct-1.0)*si[b,r]
end
end
end
so[b,r] = dmul(Gamma{5}, so[b,r]) + im*tm*si[b,r]
return nothing
end
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
SF_bndfix!(si,lp)
if abs(dpar.csw) > 1.0E-10
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(dws.st, U, si, dws.csw, dpar.m0, dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
SF_bndfix!(dws.st,lp)
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dwimpr!(so, U, dws.st, dws.csw, dpar.m0, -dpar.tm, dpar.th, dpar.csw, dpar.ct, lp)
end
end
SF_bndfix!(so,lp)
end
else
@timeit "DwdagDw" begin
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(dws.st, U, si, dpar.m0, dpar.tm, dpar.th, dpar.ct, lp)
end
end
SF_bndfix!(dws.st,lp)
@timeit "g5Dw" begin
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_g5Dw!(so, U, dws.st, dpar.m0, -dpar.tm, dpar.th, dpar.ct, lp)
end
end
SF_bndfix!(so,lp)
end
end
return nothing
end

View file

@ -31,7 +31,7 @@ scalar_field(::Type{T}, lp::SpaceParm) where {T} = CuArray{T, 2}(undef, lp.b
""" """
nscalar_field(::Type{T}, n::Integer, lp::SpaceParm) nscalar_field(::Type{T}, n::Integer, lp::SpaceParm)
Returns `n` scalar fields of elemental type `T` Returns `n` scalar fields of elemental type `T`.
""" """
nscalar_field(::Type{T}, n, lp::SpaceParm) where {T} = CuArray{T, 3}(undef, lp.bsz, n, lp.rsz) nscalar_field(::Type{T}, n, lp::SpaceParm) where {T} = CuArray{T, 3}(undef, lp.bsz, n, lp.rsz)
@ -46,7 +46,7 @@ scalar_field_point(::Type{T}, lp::SpaceParm{N,M,D}) where {T,N,M,D} = CuArray{T,
""" """
tensor_field(::Type{T}, lp::SpaceParm) tensor_field(::Type{T}, lp::SpaceParm)
Returns a tensor field of elemental type `T`. Returns a (symmetric) tensor field of elemental type `T`.
""" """
tensor_field(::Type{T}, lp::SpaceParm) where {T} = CuArray{T, 3}(undef, lp.bsz, lp.npls, lp.rsz) tensor_field(::Type{T}, lp::SpaceParm) where {T} = CuArray{T, 3}(undef, lp.bsz, lp.npls, lp.rsz)

View file

@ -36,7 +36,7 @@ norm2(a::SU2{T}) where T <: AbstractFloat = abs2(a.t1) + abs2(a.t2)
""" """
tr(g::T) where T <: Group tr(g::T) where T <: Group
Returns the trace of the groups element `g`. Returns the trace of the group element `g`.
""" """
tr(g::SU2{T}) where T <: AbstractFloat = complex(2*real(g.t1), 0.0) tr(g::SU2{T}) where T <: AbstractFloat = complex(2*real(g.t1), 0.0)

View file

@ -60,6 +60,7 @@ using .Dirac
export DiracWorkspace, DiracParam export DiracWorkspace, DiracParam
export Dw!, g5Dw!, DwdagDw!, SF_bndfix!, Csw!, pfrandomize!, mtwmdpar export Dw!, g5Dw!, DwdagDw!, SF_bndfix!, Csw!, pfrandomize!, mtwmdpar
export read_prop, save_prop, read_dpar export read_prop, save_prop, read_dpar
export Nablanabla!, flw, backflow
include("Solvers/Solvers.jl") include("Solvers/Solvers.jl")
using .Solvers using .Solvers

View file

@ -17,6 +17,8 @@ function propagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::Space
return nothing return nothing
end end
@timeit "Propagator computation" begin
fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp))))
CUDA.@allowscalar dws.sp[point_index(CartesianIndex{lp.ndim}(y),lp)...] = Spinor{4,SU3fund{Float64}}(ntuple(i -> (i==s)*SU3fund{Float64}(ntuple(j -> (j==c)*1.0,3)...),4)) CUDA.@allowscalar dws.sp[point_index(CartesianIndex{lp.ndim}(y),lp)...] = Spinor{4,SU3fund{Float64}}(ntuple(i -> (i==s)*SU3fund{Float64}(ntuple(j -> (j==c)*1.0,3)...),4))
@ -28,6 +30,8 @@ function propagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::Space
g5Dw!(pro,U,dws.sp,mtwmdpar(dpar),dws,lp) g5Dw!(pro,U,dws.sp,mtwmdpar(dpar),dws,lp)
niter = CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol) niter = CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol)
end
return niter return niter
end end
@ -40,6 +44,9 @@ function propagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::Space
return nothing return nothing
end end
@timeit "Propagator computation" begin
fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp))))
pfrandomize!(dws.sp,lp,time) pfrandomize!(dws.sp,lp,time)
CUDA.@sync begin CUDA.@sync begin
@ -49,6 +56,8 @@ function propagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::Space
g5Dw!(pro,U,dws.sp,mtwmdpar(dpar),dws,lp) g5Dw!(pro,U,dws.sp,mtwmdpar(dpar),dws,lp)
niter = CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol) niter = CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol)
end
return niter return niter
end end
@ -81,6 +90,7 @@ function bndpropagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::Sp
return nothing return nothing
end end
@timeit "Propagator computation" begin
SF_bndfix!(pro,lp) SF_bndfix!(pro,lp)
fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp))))
@ -95,6 +105,8 @@ function bndpropagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::Sp
g5Dw!(pro,U,dpar.ct*dws.sp,mtwmdpar(dpar),dws,lp) g5Dw!(pro,U,dpar.ct*dws.sp,mtwmdpar(dpar),dws,lp)
niter = CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol) niter = CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol)
end
return niter return niter
end end
@ -126,7 +138,7 @@ function Tbndpropagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::S
return nothing return nothing
end end
SF_bndfix!(pro,lp) @timeit "Propagator computation" begin
fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp)))) fill!(dws.sp,zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp))))
CUDA.@sync begin CUDA.@sync begin
@ -137,9 +149,11 @@ function Tbndpropagator!(pro, U, dpar::DiracParam{T}, dws::DiracWorkspace, lp::S
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(dws.sp) CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(dws.sp)
end end
g5Dw!(pro,U,dpar.ct*dws.sp,mtwmdpar(dpar),dws,lp) g5Dw!(pro,U,dpar.ct*dws.sp,mtwmdpar(dpar),dws,lp)
niter = CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol) niter = CG!(pro,U,DwdagDw!,dpar,lp,dws,maxiter,tol)
end
return niter return niter
end end

View file

@ -26,19 +26,19 @@ This structure contains information about the lattice being simulated. The param
- `N`: The number of dimensions - `N`: The number of dimensions
- `M`: The number of planes (i.e. \`\` N(N-1)/2 \`\`) - `M`: The number of planes (i.e. \`\` N(N-1)/2 \`\`)
- `B`: The boundary conditions in Euclidean time. Acceptable values are - `B`: The boundary conditions in Euclidean time. Acceptable values are
- `BC_PERIODIC`: Periodic boundary conditions - `BC_PERIODIC`: Periodic boundary conditions.
- `BC_SF_AFWB`: Schrödinger Funtional Aoki-Frezzoptti-Weisz Choice B. - `BC_SF_AFWB`: Schrödinger Functional Aoki-Frezzotti-Weisz Choice B.
- `BC_SF_ORBI`: Schrödinger Funtional orbifold constructions. - `BC_SF_ORBI`: Schrödinger Functional orbifold constructions.
- `BC_OPEN`: Open boundary conditions. - `BC_OPEN`: Open boundary conditions.
The structure conatins the following components: The structure contains the following components:
- `iL`: Tuple containing the lattice length in each dimension. - `iL`: Tuple containing the lattice length in each dimension.
- `plidx`: The directions of each plane - `plidx`: The directions of each plane.
- `blk`: The block size in each each dimension - `blk`: The block size in each each dimension.
- `rbk`: The number of blocks in each dimension - `rbk`: The number of blocks in each dimension.
- `bsz`: The number of points in each block - `bsz`: The number of points in each block.
- `rsz`: The number of blocks in the lattice - `rsz`: The number of blocks in the lattice.
- `ntw`: The twist tensor in each plane - `ntw`: The twist tensor in each plane.
""" """
struct SpaceParm{N,M,B,D} struct SpaceParm{N,M,B,D}
ndim::Int64 ndim::Int64

View file

@ -14,6 +14,7 @@ module Spinors
using ..Groups using ..Groups
import ..Groups.imm, ..Groups.mimm, ..Groups.norm, ..Groups.norm2, ..Groups.dot import ..Groups.imm, ..Groups.mimm, ..Groups.norm, ..Groups.norm2, ..Groups.dot
struct Spinor{NS,G} struct Spinor{NS,G}
s::NTuple{NS,G} s::NTuple{NS,G}
end end
@ -291,25 +292,23 @@ end
""" """
dmul(Gamma{n}, a::Spinor) dmul(Gamma{n}, a::Spinor)
Returns ``\\gamma_n a`` Returns ``\\gamma_n a``. Indexing for Dirac basis ``\\gamma_n``:
indexing for Dirac basis ``\\gamma_n``: 1 ``\\gamma_1``;
2 ``\\gamma_2``;
1 gamma1; 3 ``\\gamma_3``;
2 gamma2; 4 ``\\gamma_0``;
3 gamma3; 5 ``\\gamma_5``;
4 gamma0; 6 ``\\gamma_1 \\gamma_5``;
5 gamma5; 7 ``\\gamma_2 \\gamma_5``;
6 gamma1 gamma5; 8 ``\\gamma_3 \\gamma_5``;
7 gamma2 gamma5; 9 ``\\gamma_0 \\gamma_5``;
8 gamma3 gamma5; 10 ``\\sigma_{01}``;
9 gamma0 gamma5; 11 ``\\sigma_{02}``;
10 sigma01; 12 ``\\sigma_{03}``;
11 sigma02; 13 ``\\sigma_{21}``;
12 sigma03; 14 ``\\sigma_{32}``;
13 sigma21; 15 ``\\sigma_{31}``;
14 sigma32;
15 sigma31;
16 identity; 16 identity;
""" """

View file

@ -23,15 +23,15 @@ import Base.show
""" """
struct GaugeParm{T,G,N} struct GaugeParm{T,G,N}
Structure containning the parameters of a pure gauge simulation. These are: Structure containing the parameters of a pure gauge simulation. These are:
- beta: Type `T`. The bare coupling of the simulation - beta: Type `T`. The bare coupling of the simulation.
- c0: Type `T`. LatticeGPU supports the simulation of gauge actions made of 1x1 Wilson Loops and 2x1 Wilson loops. The parameter c0 defines the coefficient on the simulation of the 1x1 loops. Some common choices are: - c0: Type `T`. LatticeGPU supports the simulation of gauge actions made of 1x1 Wilson Loops and 2x1 Wilson loops. The parameter c0 defines the coefficient on the simulation of the 1x1 loops. Some common choices are:
- c0=1: Wilson plaquette action - c0=1: Wilson plaquette action.
- c0=5/3: Tree-level improved Lüscher-Weisz action. - c0=5/3: Tree-level improved Lüscher-Weisz action.
- c0=3.648: Iwasaki gauge action - c0=3.648: Iwasaki gauge action.
- cG: Tuple (`T`, `T`). Boundary improvement parameters. - cG: Tuple (`T`, `T`). Boundary improvement parameters.
- ng: `Int64`. Rank of the gauge group. - ng: `Int64`. Rank of the gauge group.
- Ubnd: Boundary field for SF boundary conditions - Ubnd: Boundary field for SF boundary conditions.
""" """
struct GaugeParm{T,G,N} struct GaugeParm{T,G,N}
beta::T beta::T
@ -79,11 +79,11 @@ end
""" """
struct YMworkspace{T} struct YMworkspace{T}
Structure containing memory workspace that is resused by different routines in order to avoid allocating/deallocating time. Structure containing memory workspace that is reused by different routines in order to avoid allocating/deallocating time.
The parameter `T` represents the precision of the simulation (i.e. single/double). The structure contains the following components The parameter `T` represents the precision of the simulation (i.e. single/double). The structure contains the following components
- GRP: Group being simulated - GRP: Group being simulated.
- ALG: Corresponding Algebra - ALG: Corresponding Algebra.
- PRC: Precision (i.e. `T`) - PRC: Precision (i.e. `T`).
- frc1: Algebra field with natural indexing. - frc1: Algebra field with natural indexing.
- frc2: Algebra field with natural indexing. - frc2: Algebra field with natural indexing.
- mom: Algebra field with natural indexing. - mom: Algebra field with natural indexing.
@ -141,7 +141,7 @@ end
""" """
function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}[, ipl]) function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}[, ipl])
Returns the twist factor. If a plane index is passed, returns the twist factor as a complex{T}. If this is not provided, returns a tuple, containing the factor of each plane. Returns the twist factor. If a plane index is passed, returns the twist factor as a Complex{T}. If this is not provided, returns a tuple, containing the factor of each plane.
""" """
function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}) where {T,G,N,M,B,D} function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}) where {T,G,N,M,B,D}

View file

@ -9,7 +9,11 @@
### created: Mon Jul 12 18:31:19 2021 ### created: Mon Jul 12 18:31:19 2021
### ###
function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,B,D}) where {T,NB,N,M,B,D}
##
## OPEN
##
function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,NB,N,M,D}
b = Int64(CUDA.threadIdx().x) b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x) r = Int64(CUDA.blockIdx().x)
@ -21,7 +25,404 @@ function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, zt
@inbounds begin @inbounds begin
for id1 in N:-1:1 for id1 in N:-1:1
bu1, ru1 = up((b, r), id1, lp) bu1, ru1 = up((b, r), id1, lp)
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1==N) TOBC = (id1==N)
for id2 = 1:id1-1
bu2, ru2 = up((b, r), id2, lp)
ipl = ipl + 1
TWP = (I[id1]==1) && (I[id2]==1)
TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) )
TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) )
# H2 staple
(b1, r1) = up((b,r), id1, lp)
(b2, r2) = up((b1,r1), id1, lp)
gb = U[b2,id2,r2]
(b2, r2) = up((b1,r1), id2, lp)
h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2]
# H3 staple
(b1, r1) = up((b,r), id2, lp)
(b2, r2) = up((b1,r1), id2, lp)
(b3, r3) = up((b1,r1), id1, lp)
gc = U[b3,id2,r3]
h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc
# END staples
ga = U[bu1,id2,ru1]
g2 = U[b,id2,r]\U[b,id1,r]
if ( (it == lp.iL[end]) || (it == 1) ) && !TOBC
S += 0.5*cG*(c0*tr(g2*ga/U[bu2,id1,ru2]) + c1*tr(g2*ga/h3) + c1*tr(g2*h2/U[bu2,id1,ru2]))
elseif (it == lp.iL[end]-1) && TOBC
S += c0*tr(g2*ga/U[bu2,id1,ru2]) + c1*tr(g2*ga/h3)
elseif (it == lp.iL[end]) && TOBC
nothing
else
if TWP
S += (ztw[ipl]*c0)*tr(g2*ga/U[bu2,id1,ru2])
else
S += c0*tr(g2*ga/U[bu2,id1,ru2])
end
if TWH2
S += (ztw[ipl]*c1)*tr(g2*h2/U[bu2,id1,ru2])
else
S += c1*tr(g2*h2/U[bu2,id1,ru2])
end
if TWH3
S += (ztw[ipl]*c1)*tr(g2*ga/h3)
else
S += c1*tr(g2*ga/h3)
end
end
end
end
plx[I] = S
end
return nothing
end
function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
S = zero(eltype(plx))
ipl = 0
for id1 in N:-1:1
bu1, ru1 = up((b, r), id1, lp)
TOBC = (id1==N)
for id2 = 1:id1-1
bu2, ru2 = up((b, r), id2, lp)
ipl = ipl + 1
TWP = (I[id1]==1) && (I[id2]==1)
gt1 = U[bu1,id2,ru1]
if ( (it == lp.iL[end]) || (it == 1)) && !TOBC
S += 0.5*cG*(tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2])))
elseif (it == lp.iL[end]) && TOBC
nothing
else
if TWP
S += ztw[ipl]*tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2]))
else
S += tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2]))
end
end
end
end
plx[I] = S
end
return nothing
end
function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
@inbounds begin
id1, id2 = lp.plidx[ipl]
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
TWP = (I[id1]==1)&&(I[id2]==1)
TOBC = (id1 == N)
gt1 = U[bu1,id2,ru1]
g1 = gt1/U[bu2,id1,ru2]
g2 = U[b,id2,r]\U[b,id1,r]
if !TOBC && ( (it == 1) || (it == lp.iL[end]) )
X = 0.5*cG*projalg(U[b,id1,r]*g1/U[b,id2,r])
frc1[b ,id1, r ] -= X
frc1[b ,id2, r ] += X
frc2[bu1,id2,ru1] -= 0.5*cG*projalg(g1*g2)
frc2[bu2,id1,ru2] += 0.5*cG*projalg(g2*g1)
elseif TOBC && (it == lp.iL[end])
nothing
else
if TWP
X = projalg(ztw,U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(ztw,g1*g2)
frc2[bu2,id1,ru2] += projalg(ztw,g2*g1)
else
X = projalg(U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(g1*g2)
frc2[bu2,id1,ru2] += projalg(g2*g1)
end
frc1[b ,id1, r ] -= X
frc1[b ,id2, r ] += X
end
end
return nothing
end
function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
@inbounds begin
id1, id2 = lp.plidx[ipl]
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
TOBC = (id1 == N)
TWP = (I[id1]==1) && (I[id2]==1)
TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) )
TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) )
TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) )
TWH4 = TWP || ( (I[id1]==2) && (I[id2]==1) )
# H1 staple
(b1, r1) = dw((b,r), id2, lp)
(b2, r2) = up((b1,r1), id1, lp)
gc = U[b2,id2,r2]
h1 = (U[b1,id2,r1]\U[b1,id1,r1])*gc
# H2 staple
(b1, r1) = up((b,r), id1, lp)
(b2, r2) = up((b1,r1), id1, lp)
gb = U[b2,id2,r2]
(b2, r2) = up((b1,r1), id2, lp)
h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2]
# H3 staple
(b1, r1) = up((b,r), id2, lp)
(b2, r2) = up((b1,r1), id2, lp)
(b3, r3) = up((b1,r1), id1, lp)
gc = U[b3,id2,r3]
h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc
# H4 staple
(b1, r1) = dw((b,r), id1, lp)
(b2, r2) = up((b1,r1), id2, lp)
h4 = (U[b1,id1,r1]\U[b1,id2,r1])*U[b2,id1,r2]
# END staples
ga = U[bu1,id2,ru1]
g1 = ga/U[bu2,id1,ru2]
g2 = U[b,id2,r]\U[b,id1,r]
if !TOBC && ( (it == 1) || (it == lp.iL[end]) )
X = 0.5*cG*(c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) )
frc1[b,id1,r] -= X + 0.5*cG*c1*projalg(U[b,id1,r]*g1/h4)
frc1[b,id2,r] += X + 0.5*cG*c1*projalg(h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= 0.5*cG*c0*projalg(g1*g2)
frc2[bu2,id1,ru2] += 0.5*cG*c0*projalg(g2*g1)
frc2[bu1,id2,ru1] -= 0.5*cG*c1*projalg((g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += 0.5*cG*c1*projalg((U[b,id2,r]\h1)*g1)
frc2[bu2,id1,ru2] += 0.5*cG*c1*projalg(g2*h2/U[bu2,id1,ru2])
frc2[bu1,id2,ru1] -= 0.5*cG*c1*projalg((ga/h3)*g2)
frc2[bu1,id2,ru1] -= 0.5*cG*c1*projalg((g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += 0.5*cG*c1*projalg(h4\U[b,id1,r]*g1)
elseif TOBC && (it == lp.iL[end])
nothing
elseif TOBC && (it == 1)
X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) + c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc1[b,id1,r] -= X
frc1[b,id2,r] += X + c1*projalg(h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c0*projalg(g1*g2)
frc2[bu2,id1,ru2] += c0*projalg(g2*g1)
frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1)
frc2[bu2,id1,ru2] += c1*projalg(g2*h2/U[bu2,id1,ru2])
frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2)
elseif TOBC && (it == (lp.iL[end]-1) )
X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) + c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc1[b,id1,r] -= X + c1*projalg(U[b,id1,r]*g1/h4)
frc1[b,id2,r] += X + c1*projalg(h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c0*projalg(g1*g2)
frc2[bu2,id1,ru2] += c0*projalg(g2*g1)
frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1)
frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2)
frc2[bu1,id2,ru1] -= c1*projalg((g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1)
else
if TWP
X = projalg(c0*ztw,U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(c0*ztw,g1*g2)
frc2[bu2,id1,ru2] += projalg(c0*ztw,g2*g1)
else
X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c0*projalg(g1*g2)
frc2[bu2,id1,ru2] += c0*projalg(g2*g1)
end
if TWH1
frc1[b,id2,r] += projalg(ztw*c1,h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += projalg(ztw*c1,(U[b,id2,r]\h1)*g1)
else
frc1[b,id2,r] += c1*projalg(h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1)
end
if TWH2
X += projalg(ztw*c1,U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2]))
frc2[bu2,id1,ru2] += projalg(ztw*c1,g2*h2/U[bu2,id1,ru2])
else
X += c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2]))
frc2[bu2,id1,ru2] += c1*projalg(g2*h2/U[bu2,id1,ru2])
end
if TWH3
X += projalg(ztw*c1,U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(ga/h3)*g2)
else
X += c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2)
end
if TWH4
frc1[b,id1,r] -= projalg(ztw*c1,U[b,id1,r]*g1/h4)
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += projalg(ztw*c1,h4\U[b,id1,r]*g1)
else
frc1[b,id1,r] -= c1*projalg(U[b,id1,r]*g1/h4)
frc2[bu1,id2,ru1] -= c1*projalg((g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1)
end
frc1[b,id1,r] -= X
frc1[b,id2,r] += X
end
end
return nothing
end
##
## SF
##
function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,BC_SF_ORBI,D}) where {T,NB,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
ipl = 0
S = zero(eltype(plx))
@inbounds begin
for id1 in N:-1:1
bu1, ru1 = up((b, r), id1, lp)
SFBC = (id1==N)
for id2 = 1:id1-1
bu2, ru2 = up((b, r), id2, lp)
ipl = ipl + 1
TWP = (I[id1]==1) && (I[id2]==1)
TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) )
TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) )
# H2 staple
(b1, r1) = up((b,r), id1, lp)
(b2, r2) = up((b1,r1), id1, lp)
if SFBC && (it == lp.iL[end]-1)
gb = Ubnd[id2]
else
gb = U[b2,id2,r2]
end
(b2, r2) = up((b1,r1), id2, lp)
h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2]
# H3 staple
(b1, r1) = up((b,r), id2, lp)
(b2, r2) = up((b1,r1), id2, lp)
(b3, r3) = up((b1,r1), id1, lp)
if SFBC && (it == lp.iL[end])
gc = Ubnd[id2]
else
gc = U[b3,id2,r3]
end
h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc
# END staples
if SFBC && (it == lp.iL[end])
ga = Ubnd[id2]
else
ga = U[bu1,id2,ru1]
end
g2 = U[b,id2,r]\U[b,id1,r]
if (it == lp.iL[end]) && SFBC
S += cG*(c0*tr(g2*ga/U[bu2,id1,ru2])) + (c1)*tr(g2*ga/h3) + (c1/2)*tr((g2*ga/U[bu2,id1,ru2])*g2*ga/U[bu2,id1,ru2])
elseif (it == 1) && SFBC
S += cG*(c0*tr(g2*ga/U[bu2,id1,ru2])) + (c1)*tr(g2*ga/h3) + c1*tr(g2*h2/U[bu2,id1,ru2]) + (c1/2)*tr((g2*ga/U[bu2,id1,ru2])*g2*ga/U[bu2,id1,ru2])
else
if TWP
S += (ztw[ipl]*c0)*tr(g2*ga/U[bu2,id1,ru2])
else
S += c0*tr(g2*ga/U[bu2,id1,ru2])
end
if TWH2
S += (ztw[ipl]*c1)*tr(g2*h2/U[bu2,id1,ru2])
else
S += c1*tr(g2*h2/U[bu2,id1,ru2])
end
if TWH3
S += (ztw[ipl]*c1)*tr(g2*ga/h3)
else
S += c1*tr(g2*ga/h3)
end
end
end
end
plx[I] = S
end
return nothing
end
function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,BC_SF_AFWB,D}) where {T,NB,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
ipl = 0
S = zero(eltype(plx))
@inbounds begin
for id1 in N:-1:1
bu1, ru1 = up((b, r), id1, lp)
SFBC = (id1==N)
for id2 = 1:id1-1 for id2 = 1:id1-1
bu2, ru2 = up((b, r), id2, lp) bu2, ru2 = up((b, r), id2, lp)
@ -95,7 +496,7 @@ function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, zt
return nothing return nothing
end end
function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::Union{SpaceParm{N,M,BC_SF_ORBI,D},SpaceParm{N,M,BC_SF_AFWB,D}}) where {T,N,M,D}
@inbounds begin @inbounds begin
@ -103,8 +504,7 @@ function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,B
r = Int64(CUDA.blockIdx().x) r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp) I = point_coord((b,r), lp)
it = I[N] it = I[N]
IBND = ( ( (B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && IBND = ( (it == 1) || (it == lp.iL[end]))
( (it == 1) || (it == lp.iL[end])) )
S = zero(eltype(plx)) S = zero(eltype(plx))
ipl = 0 ipl = 0
@ -141,7 +541,7 @@ function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,B
return nothing return nothing
end end
function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, ipl, lp::Union{SpaceParm{N,M,BC_SF_ORBI,D},SpaceParm{N,M,BC_SF_AFWB,D}}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x) b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x) r = Int64(CUDA.blockIdx().x)
@ -154,7 +554,7 @@ function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw,
bu2, ru2 = up((b, r), id2, lp) bu2, ru2 = up((b, r), id2, lp)
TWP = (I[id1]==1)&&(I[id2]==1) TWP = (I[id1]==1)&&(I[id2]==1)
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == N) SFBC = (id1 == N)
if SFBC && (it == lp.iL[end]) if SFBC && (it == lp.iL[end])
gt1 = Ubnd[id2] gt1 = Ubnd[id2]
@ -195,7 +595,7 @@ function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw,
return nothing return nothing
end end
function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_SF_ORBI,D}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x) b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x) r = Int64(CUDA.blockIdx().x)
@ -207,7 +607,146 @@ function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG,
bu1, ru1 = up((b, r), id1, lp) bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp) bu2, ru2 = up((b, r), id2, lp)
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == N) SFBC = (id1 == N)
TWP = (I[id1]==1) && (I[id2]==1)
TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) )
TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) )
TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) )
TWH4 = TWP || ( (I[id1]==2) && (I[id2]==1) )
# H1 staple
(b1, r1) = dw((b,r), id2, lp)
(b2, r2) = up((b1,r1), id1, lp)
if SFBC && (it == lp.iL[end])
gc = Ubnd[id2]
else
gc = U[b2,id2,r2]
end
h1 = (U[b1,id2,r1]\U[b1,id1,r1])*gc
# H2 staple
(b1, r1) = up((b,r), id1, lp)
(b2, r2) = up((b1,r1), id1, lp)
if SFBC && (it == lp.iL[end]-1)
gb = Ubnd[id2]
else
gb = U[b2,id2,r2]
end
(b2, r2) = up((b1,r1), id2, lp)
h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2]
# H3 staple
(b1, r1) = up((b,r), id2, lp)
(b2, r2) = up((b1,r1), id2, lp)
(b3, r3) = up((b1,r1), id1, lp)
if SFBC && (it == lp.iL[end])
gc = Ubnd[id2]
else
gc = U[b3,id2,r3]
end
h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc
# H4 staple
(b1, r1) = dw((b,r), id1, lp)
(b2, r2) = up((b1,r1), id2, lp)
h4 = (U[b1,id1,r1]\U[b1,id2,r1])*U[b2,id1,r2]
# END staples
if SFBC && (it == lp.iL[end])
ga = Ubnd[id2]
else
ga = U[bu1,id2,ru1]
end
g1 = ga/U[bu2,id1,ru2]
g2 = U[b,id2,r]\U[b,id1,r]
if SFBC && (it == 1)
X = (cG*c0)*projalg(U[b,id1,r]*g1/U[b,id2,r]) + c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2])) +
(c1)*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3)) + c1*(projalg(U[b,id1,r]*g1*g2*g1/U[b,id2,r]))
frc1[b,id1,r] -= X
frc2[bu1,id2,ru1] -= (cG*c0)*projalg(g1*g2) + c1*projalg((ga/h3)*g2) +
c1*projalg((g1/U[b,id2,r])*h1) + c1*projalg(g1*g2*g1*g2)
frc2[bu2,id1,ru2] += (cG*c0)*projalg(g2*g1) + c1*projalg((U[b,id2,r]\h1)*g1) +
c1*projalg(g2*h2/U[bu2,id1,ru2]) + c1*projalg(g2*g1*g2*g1)
elseif SFBC && (it == lp.iL[end])
X = cG*c0*projalg(U[b,id1,r]*g1/U[b,id2,r]) +
c1 * (projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))) + c1*(projalg(U[b,id1,r]*g1*g2*g1/U[b,id2,r]))
frc1[b,id1,r] -= X + c1*projalg(U[b,id1,r]*g1/h4)
frc1[b,id2,r] += X + c1*projalg(h1*g1/U[b,id2,r])
frc2[bu2,id1,ru2] += (cG*c0)*projalg(g2*g1) + c1*projalg((U[b,id2,r]\h1)*g1) +
c1 * projalg(h4\U[b,id1,r]*g1) + c1* projalg(g2*g1*g2*g1)
else
if TWP
X = projalg(c0*ztw,U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(c0*ztw,g1*g2)
frc2[bu2,id1,ru2] += projalg(c0*ztw,g2*g1)
else
X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c0*projalg(g1*g2)
frc2[bu2,id1,ru2] += c0*projalg(g2*g1)
end
if TWH1
frc1[b,id2,r] += projalg(ztw*c1,h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += projalg(ztw*c1,(U[b,id2,r]\h1)*g1)
else
frc1[b,id2,r] += c1*projalg(h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1)
end
if TWH2
X += projalg(ztw*c1,U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2]))
frc2[bu2,id1,ru2] += projalg(ztw*c1,g2*h2/U[bu2,id1,ru2])
else
X += c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2]))
frc2[bu2,id1,ru2] += c1*projalg(g2*h2/U[bu2,id1,ru2])
end
if TWH3
X += projalg(ztw*c1,U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(ga/h3)*g2)
else
X += c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2)
end
if TWH4
frc1[b,id1,r] -= projalg(ztw*c1,U[b,id1,r]*g1/h4)
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += projalg(ztw*c1,h4\U[b,id1,r]*g1)
else
frc1[b,id1,r] -= c1*projalg(U[b,id1,r]*g1/h4)
frc2[bu1,id2,ru1] -= c1*projalg((g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1)
end
frc1[b,id1,r] -= X
frc1[b,id2,r] += X
end
end
return nothing
end
function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_SF_AFWB,D}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
@inbounds begin
id1, id2 = lp.plidx[ipl]
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
SFBC = (id1 == N)
TWP = (I[id1]==1) && (I[id2]==1) TWP = (I[id1]==1) && (I[id2]==1)
TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) ) TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) )
TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) ) TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) )
@ -334,6 +873,253 @@ function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG,
return nothing return nothing
end end
##
## PERIODIC
##
function krnl_impr!(plx, U::AbstractArray{T}, c0, c1, Ubnd::NTuple{NB,T}, cG, ztw, lp::SpaceParm{N,M,BC_PERIODIC,D}) where {T,NB,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
ipl = 0
S = zero(eltype(plx))
@inbounds begin
for id1 in N:-1:1
bu1, ru1 = up((b, r), id1, lp)
for id2 = 1:id1-1
bu2, ru2 = up((b, r), id2, lp)
ipl = ipl + 1
TWP = (I[id1]==1) && (I[id2]==1)
TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) )
TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) )
# H2 staple
(b1, r1) = up((b,r), id1, lp)
(b2, r2) = up((b1,r1), id1, lp)
gb = U[b2,id2,r2]
(b2, r2) = up((b1,r1), id2, lp)
h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2]
# H3 staple
(b1, r1) = up((b,r), id2, lp)
(b2, r2) = up((b1,r1), id2, lp)
(b3, r3) = up((b1,r1), id1, lp)
gc = U[b3,id2,r3]
h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc
# END staples
ga = U[bu1,id2,ru1]
g2 = U[b,id2,r]\U[b,id1,r]
if TWP
S += (ztw[ipl]*c0)*tr(g2*ga/U[bu2,id1,ru2])
else
S += c0*tr(g2*ga/U[bu2,id1,ru2])
end
if TWH2
S += (ztw[ipl]*c1)*tr(g2*h2/U[bu2,id1,ru2])
else
S += c1*tr(g2*h2/U[bu2,id1,ru2])
end
if TWH3
S += (ztw[ipl]*c1)*tr(g2*ga/h3)
else
S += c1*tr(g2*ga/h3)
end
end
end
plx[I] = S
end
return nothing
end
function krnl_plaq!(plx, U::AbstractArray{T}, Ubnd, cG, ztw, lp::SpaceParm{N,M,BC_PERIODIC,D}) where {T,N,M,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
S = zero(eltype(plx))
ipl = 0
for id1 in N:-1:1
bu1, ru1 = up((b, r), id1, lp)
for id2 = 1:id1-1
bu2, ru2 = up((b, r), id2, lp)
ipl = ipl + 1
TWP = (I[id1]==1) && (I[id2]==1)
gt1 = U[bu1,id2,ru1]
if TWP
S += ztw[ipl]*tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2]))
else
S += tr(U[b,id1,r]*gt1 / (U[b,id2,r]*U[bu2,id1,ru2]))
end
end
end
plx[I] = S
end
return nothing
end
function krnl_force_wilson_pln!(frc1, frc2, U::AbstractArray{T}, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_PERIODIC,D}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
@inbounds begin
id1, id2 = lp.plidx[ipl]
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
TWP = (I[id1]==1)&&(I[id2]==1)
gt1 = U[bu1,id2,ru1]
g1 = gt1/U[bu2,id1,ru2]
g2 = U[b,id2,r]\U[b,id1,r]
if TWP
X = projalg(ztw,U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(ztw,g1*g2)
frc2[bu2,id1,ru2] += projalg(ztw,g2*g1)
else
X = projalg(U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(g1*g2)
frc2[bu2,id1,ru2] += projalg(g2*g1)
end
frc1[b ,id1, r ] -= X
frc1[b ,id2, r ] += X
end
return nothing
end
function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG, ztw, ipl, lp::SpaceParm{N,M,BC_PERIODIC,D}) where {T,N,M,D}
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
I = point_coord((b,r), lp)
it = I[N]
@inbounds begin
id1, id2 = lp.plidx[ipl]
bu1, ru1 = up((b, r), id1, lp)
bu2, ru2 = up((b, r), id2, lp)
TWP = (I[id1]==1) && (I[id2]==1)
TWH1 = TWP || ( (I[id1]==1) && (I[id2]==2) )
TWH2 = TWP || ( (I[id1]==lp.iL[id1]) && (I[id2]==1) )
TWH3 = TWP || ( (I[id1]==1) && (I[id2]==lp.iL[id2]) )
TWH4 = TWP || ( (I[id1]==2) && (I[id2]==1) )
# H1 staple
(b1, r1) = dw((b,r), id2, lp)
(b2, r2) = up((b1,r1), id1, lp)
gc = U[b2,id2,r2]
h1 = (U[b1,id2,r1]\U[b1,id1,r1])*gc
# H2 staple
(b1, r1) = up((b,r), id1, lp)
(b2, r2) = up((b1,r1), id1, lp)
gb = U[b2,id2,r2]
(b2, r2) = up((b1,r1), id2, lp)
h2 = (U[b1,id1,r1]*gb)/U[b2,id1,r2]
# H3 staple
(b1, r1) = up((b,r), id2, lp)
(b2, r2) = up((b1,r1), id2, lp)
(b3, r3) = up((b1,r1), id1, lp)
gc = U[b3,id2,r3]
h3 = (U[b1,id2,r1]*U[b2,id1,r2])/gc
# H4 staple
(b1, r1) = dw((b,r), id1, lp)
(b2, r2) = up((b1,r1), id2, lp)
h4 = (U[b1,id1,r1]\U[b1,id2,r1])*U[b2,id1,r2]
# END staples
ga = U[bu1,id2,ru1]
g1 = ga/U[bu2,id1,ru2]
g2 = U[b,id2,r]\U[b,id1,r]
if TWP
X = projalg(c0*ztw,U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(c0*ztw,g1*g2)
frc2[bu2,id1,ru2] += projalg(c0*ztw,g2*g1)
else
X = c0*projalg(U[b,id1,r]*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c0*projalg(g1*g2)
frc2[bu2,id1,ru2] += c0*projalg(g2*g1)
end
if TWH1
frc1[b,id2,r] += projalg(ztw*c1,h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += projalg(ztw*c1,(U[b,id2,r]\h1)*g1)
else
frc1[b,id2,r] += c1*projalg(h1*g1/U[b,id2,r])
frc2[bu1,id2,ru1] -= c1*projalg((g1/U[b,id2,r])*h1)
frc2[bu2,id1,ru2] += c1*projalg((U[b,id2,r]\h1)*g1)
end
if TWH2
X += projalg(ztw*c1,U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2]))
frc2[bu2,id1,ru2] += projalg(ztw*c1,g2*h2/U[bu2,id1,ru2])
else
X += c1*projalg(U[b,id1,r]*h2/(U[b,id2,r]*U[bu2,id1,ru2]))
frc2[bu2,id1,ru2] += c1*projalg(g2*h2/U[bu2,id1,ru2])
end
if TWH3
X += projalg(ztw*c1,U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(ga/h3)*g2)
else
X += c1*projalg(U[b,id1,r]*ga/(U[b,id2,r]*h3))
frc2[bu1,id2,ru1] -= c1*projalg((ga/h3)*g2)
end
if TWH4
frc1[b,id1,r] -= projalg(ztw*c1,U[b,id1,r]*g1/h4)
frc2[bu1,id2,ru1] -= projalg(ztw*c1,(g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += projalg(ztw*c1,h4\U[b,id1,r]*g1)
else
frc1[b,id1,r] -= c1*projalg(U[b,id1,r]*g1/h4)
frc2[bu1,id2,ru1] -= c1*projalg((g1/h4)*U[b,id1,r])
frc2[bu2,id1,ru2] += c1*projalg(h4\U[b,id1,r]*g1)
end
frc1[b,id1,r] -= X
frc1[b,id2,r] += X
end
return nothing
end
""" """
function force_gauge(ymws::YMworkspace, U, gp::GaugeParm, lp::SpaceParm) function force_gauge(ymws::YMworkspace, U, gp::GaugeParm, lp::SpaceParm)
@ -388,4 +1174,3 @@ function force_pln!(frc1, ftmp, U, Ubnd, cG, ztw, lp::SpaceParm, c0=1)
return nothing return nothing
end end

View file

@ -54,14 +54,28 @@ function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,BC_PERIODI
return nothing return nothing
end end
function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,B,D}) where {T,N,M,B,D} function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,BC_OPEN,D}) where {T,N,M,D}
@inbounds begin
b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x)
for id in 1:lp.ndim
frc[b,id,r] = SU3alg(m[b,id,1,r], m[b,id,2,r], m[b,id,3,r],
m[b,id,4,r], m[b,id,5,r], m[b,id,6,r],
m[b,id,7,r], m[b,id,8,r])
end
end
return nothing
end
function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::Union{SpaceParm{N,M,BC_SF_ORBI,D},SpaceParm{N,M,BC_SF_AFWB,D}}) where {T,N,M,D}
@inbounds begin @inbounds begin
b = Int64(CUDA.threadIdx().x) b = Int64(CUDA.threadIdx().x)
r = Int64(CUDA.blockIdx().x) r = Int64(CUDA.blockIdx().x)
it = point_time((b,r), lp) it = point_time((b,r), lp)
if ((B==BC_SF_AFWB)||(B==BC_SF_ORBI))
if it == 1 if it == 1
for id in 1:lp.ndim-1 for id in 1:lp.ndim-1
frc[b,id,r] = zero(T) frc[b,id,r] = zero(T)
@ -77,7 +91,6 @@ function krnl_assign_SU3!(frc::AbstractArray{T}, m, lp::SpaceParm{N,M,B,D}) wher
end end
end end
end end
end
return nothing return nothing
end end

View file

@ -135,6 +135,7 @@ function krnl_add_zth!(frc, frc2::AbstractArray{TA}, U::AbstractArray{TG}, lp::S
it = point_time((b, r), lp) it = point_time((b, r), lp)
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) )
OBC = (B == BC_OPEN)
@inbounds for id in 1:N @inbounds for id in 1:N
bu, ru = up((b,r), id, lp) bu, ru = up((b,r), id, lp)
@ -152,13 +153,21 @@ function krnl_add_zth!(frc, frc2::AbstractArray{TA}, U::AbstractArray{TG}, lp::S
frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) +
projalg(U[b,id,r]*X/U[b,id,r])) projalg(U[b,id,r]*X/U[b,id,r]))
end end
end
if OBC
if (it > 1) && (it < lp.iL[end])
frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) +
projalg(U[b,id,r]*X/U[b,id,r]))
elseif ((it == lp.iL[end]) || (it == 1)) && (id < N)
frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) +
projalg(U[b,id,r]*X/U[b,id,r]))
end
else else
frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) + frc2[b,id,r] = (5/6)*frc[b,id,r] + (1/6)*(projalg(Ud\Y*Ud) +
projalg(U[b,id,r]*X/U[b,id,r])) projalg(U[b,id,r]*X/U[b,id,r]))
end end
end end
end end
return nothing return nothing
end end
@ -204,19 +213,21 @@ Integrates the flow equations with the integration scheme defined by `int` using
""" """
function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T} function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T}
eps = int.eps_ini eps = epsini
dt = tend dt = tend
nstp = 0 nstp = 0
eps_all = Vector{T}(undef,0)
while true while true
ns = convert(Int64, floor(dt/eps)) ns = convert(Int64, floor(dt/eps))
if ns > 10 if ns > 10
flw(U, int, 9, eps, gp, lp, ymws) flw(U, int, 9, eps, gp, lp, ymws)
ymws.U1 .= U ymws.U1 .= U
flw(U, int, 2, eps/2, gp, lp, ymws) flw(U, int, 1, eps, gp, lp, ymws)
flw(ymws.U1, int, 1, eps, gp, lp, ymws) flw(ymws.U1, int, 2, eps/2, gp, lp, ymws)
dt = dt - 10*eps dt = dt - 10*eps
nstp = nstp + 10 nstp = nstp + 10
push!(eps_all,ntuple(i->eps,10)...)
# adjust step size # adjust step size
ymws.U1 .= ymws.U1 ./ U ymws.U1 .= ymws.U1 ./ U
@ -227,6 +238,9 @@ function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp
flw(U, int, ns, eps, gp, lp, ymws) flw(U, int, ns, eps, gp, lp, ymws)
dt = dt - ns*eps dt = dt - ns*eps
push!(eps_all,ntuple(i->eps,ns)...)
push!(eps_all,dt)
flw(U, int, 1, dt, gp, lp, ymws) flw(U, int, 1, dt, gp, lp, ymws)
dt = zero(tend) dt = zero(tend)
@ -238,7 +252,7 @@ function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp
end end
end end
return nstp, eps return nstp, eps_all
end end
flw_adapt(U, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T} = flw_adapt(U, int, tend, int.eps_ini, gp, lp, ymws) flw_adapt(U, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T} = flw_adapt(U, int, tend, int.eps_ini, gp, lp, ymws)
@ -260,6 +274,7 @@ function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws:
ztw = ztwist(gp, lp) ztw = ztwist(gp, lp)
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) )
OBC = (B == BC_OPEN)
tp = ntuple(i->i, N-1) tp = ntuple(i->i, N-1)
V3 = prod(lp.iL[1:end-1]) V3 = prod(lp.iL[1:end-1])
@ -280,6 +295,10 @@ function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws:
if !SFBC if !SFBC
Eslc[1,ipl] = Etmp[1] + Etmp[end] Eslc[1,ipl] = Etmp[1] + Etmp[end]
end end
if OBC ## Check normalization of timelike boundary plaquettes
Eslc[end,ipl] = Etmp[end-1]
Eslc[1,ipl] = Etmp[1]
end
else else
for it in 1:lp.iL[end] for it in 1:lp.iL[end]
Eslc[it,ipl] = 2*Etmp[it] Eslc[it,ipl] = 2*Etmp[it]
@ -304,7 +323,7 @@ function krnl_plaq_pln!(plx, U::AbstractArray{T}, Ubnd, ztw, ipl, lp::SpaceParm{
I = point_coord((b,r), lp) I = point_coord((b,r), lp)
id1, id2 = lp.plidx[ipl] id1, id2 = lp.plidx[ipl]
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI)) && (id1 == lp.iL[end]) SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI)) && (id1 == N)
TWP = ((I[id1]==1)&&(I[id2]==1)) TWP = ((I[id1]==1)&&(I[id2]==1))
bu1, ru1 = up((b, r), id1, lp) bu1, ru1 = up((b, r), id1, lp)
@ -322,14 +341,13 @@ function krnl_plaq_pln!(plx, U::AbstractArray{T}, Ubnd, ztw, ipl, lp::SpaceParm{
plx[I] = tr(U[b,id1,r]*gt / (U[b,id2,r]*U[bu2,id1,ru2])) plx[I] = tr(U[b,id1,r]*gt / (U[b,id2,r]*U[bu2,id1,ru2]))
end end
end end
return nothing return nothing
end end
""" """
Qtop([Qslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) Qtop([Qslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace)
Measure the topological charge `Q` of the configuration `U` using the clover definition of the field strength tensor. If the argument `Qslc` is present the contribution for each Euclidean time slice are returned. Only wors in 4D. Measure the topological charge `Q` of the configuration `U` using the clover definition of the field strength tensor. If the argument `Qslc` is present the contributions for each Euclidean time slice are returned. Only works in 4D.
""" """
function Qtop(Qslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace) where {M,B,D} function Qtop(Qslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace) where {M,B,D}
@ -345,21 +363,18 @@ function Qtop(Qslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace)
CUDA.@sync begin CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp) CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp)
end end
CUDA.@sync begin CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 2,4, ztw[2], ztw[4], lp) CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 2,4, ztw[2], ztw[4], lp)
end end
CUDA.@sync begin CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, +, ymws.frc1, ymws.frc2, lp) CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, +, ymws.frc1, ymws.frc2, lp)
end end
CUDA.@sync begin CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 3,6, ztw[3], ztw[6], lp) CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_field_tensor!(ymws.frc1, ymws.frc2, U, gp.Ubnd, 3,6, ztw[3], ztw[6], lp)
end end
CUDA.@sync begin CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp) CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_add_qd!(ymws.rm, -, ymws.frc1, ymws.frc2, lp)
end end
Qslc .= reshape(Array(CUDA.reduce(+, ymws.rm; dims=tp)),lp.iL[end])./(32*pi^2) Qslc .= reshape(Array(CUDA.reduce(+, ymws.rm; dims=tp)),lp.iL[end])./(32*pi^2)
end end
@ -371,7 +386,7 @@ Qtop(U, gp::GaugeParm, lp::SpaceParm{4,M,D}, ymws::YMworkspace{T}) where {T,M,D}
""" """
function Eoft_clover([Eslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) function Eoft_clover([Eslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace)
Measure the action density `E(t)` using the clover discretization. If the argument `Eslc` Measure the action density `E(t)` using the clover discretization. If the argument `Eslc` is given
the contribution for each Euclidean time slice and plane are returned. the contribution for each Euclidean time slice and plane are returned.
""" """
function Eoft_clover(Eslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace{T}) where {T,M,B,D} function Eoft_clover(Eslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace{T}) where {T,M,B,D}
@ -469,6 +484,7 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
#First plane #First plane
id1, id2 = lp.plidx[ipl1] id1, id2 = lp.plidx[ipl1]
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4) SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4)
OBC = ((B == BC_OPEN) && (id1 == 4))
TWP = ((I[id1]==1)&&(I[id2]==1)) TWP = ((I[id1]==1)&&(I[id2]==1))
bu1, ru1 = up((b, r), id1, lp) bu1, ru1 = up((b, r), id1, lp)
@ -488,6 +504,11 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
frc1[bu1,2,ru1] = zero(TA) frc1[bu1,2,ru1] = zero(TA)
frc1[bd,3,rd] = zero(TA) frc1[bd,3,rd] = zero(TA)
frc1[bu2,4,ru2] = projalg(l2*l1) frc1[bu2,4,ru2] = projalg(l2*l1)
elseif OBC && (it == lp.iL[end])
frc1[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r])
frc1[bu1,2,ru1] = zero(TA)
frc1[bd,3,rd] = zero(TA)
frc1[bu2,4,ru2] = projalg(l2*l1)
else else
if TWP if TWP
frc1[b,1,r] = projalg(ztw1, U[b,id1,r]*l1/U[b,id2,r]) frc1[b,1,r] = projalg(ztw1, U[b,id1,r]*l1/U[b,id2,r])
@ -505,6 +526,7 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
# Second plane # Second plane
id1, id2 = lp.plidx[ipl2] id1, id2 = lp.plidx[ipl2]
SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4) SFBC = ((B == BC_SF_AFWB) || (B == BC_SF_ORBI) ) && (id1 == 4)
OBC = ((B == BC_OPEN) && (id1 == 4))
TWP = ((I[id1]==1)&&(I[id2]==1)) TWP = ((I[id1]==1)&&(I[id2]==1))
bu1, ru1 = up((b, r), id1, lp) bu1, ru1 = up((b, r), id1, lp)
@ -524,6 +546,11 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
frc2[bu1,2,ru1] = zero(TA) frc2[bu1,2,ru1] = zero(TA)
frc2[bd,3,rd] = zero(TA) frc2[bd,3,rd] = zero(TA)
frc2[bu2,4,ru2] = projalg(l2*l1) frc2[bu2,4,ru2] = projalg(l2*l1)
elseif OBC && (it == lp.iL[end])
frc1[b,1,r] = projalg(U[b,id1,r]*l1/U[b,id2,r])
frc1[bu1,2,ru1] = zero(TA)
frc1[bd,3,rd] = zero(TA)
frc1[bu2,4,ru2] = projalg(l2*l1)
else else
if TWP if TWP
frc2[b,1,r] = projalg(ztw2, U[b,id1,r]*l1/U[b,id2,r]) frc2[b,1,r] = projalg(ztw2, U[b,id1,r]*l1/U[b,id2,r])
@ -538,7 +565,5 @@ function krnl_field_tensor!(frc1::AbstractArray{TA}, frc2, U::AbstractArray{T},
end end
end end
end end
return nothing return nothing
end end

View file

@ -13,7 +13,7 @@
function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace) function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace)
Returns the value of the gauge action for the configuration U. The parameters `\beta` and `c0` are taken from the `gp` structure. Returns the value of the gauge action for the configuration U. The parameters ``\\beta`` and `c0` are taken from the `gp` structure.
""" """
function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) where T <: AbstractFloat function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) where T <: AbstractFloat
@ -71,7 +71,7 @@ end
""" """
HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace; noacc=false) HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace; noacc=false)
Performs a HMC step (molecular dynamics integration and accept/reject step). The configuration `U` is updated ans function returns the energy violation and if the configuration was accepted in a tuple. Performs a HMC step (molecular dynamics integration and accept/reject step). The configuration `U` is updated and function returns the energy violation and if the configuration was accepted in a tuple.
""" """
function HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}; noacc=false) where T function HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}; noacc=false) where T

View file

@ -0,0 +1,42 @@
using CUDA
using Pkg
Pkg.activate("/home/fperez/Git/LGPU_fork_ferflow")
using LatticeGPU
lp = SpaceParm{4}((4,4,4,4),(2,2,2,2),0,(0,0,0,0,0,0));
pso = scalar_field(Spinor{4,SU3fund{Float64}},lp);
psi = scalar_field(Spinor{4,SU3fund{Float64}},lp);
psi2 = scalar_field(Spinor{4,SU3fund{Float64}},lp);
ymws = YMworkspace(SU3,Float64,lp);
dws = DiracWorkspace(SU3fund,Float64,lp);
int = wfl_rk3(Float64, 0.01, 1.0)
gp = GaugeParm{Float64}(SU3{Float64},6.0,1.0,(1.0,0.0),(0.0,0.0),lp.iL)
dpar = DiracParam{Float64}(SU3fund,1.3,0.9,(1.0,1.0,1.0,1.0),0.0)
randomize!(ymws.mom, lp, ymws)
U = exp.(ymws.mom);
pfrandomize!(psi,lp)
for L in 4:19
pso .= psi
V = Array(U)
a,b = flw_adapt(U, psi, int, L*int.eps, gp,dpar, lp, ymws,dws)
# for i in 1:a
# flw(U, psi, int, 1 ,b[i], gp, dpar, lp, ymws, dws)
# end
pfrandomize!(psi2,lp)
foo = sum(dot.(psi,psi2))# field_dot(psi,psi2,sumf,lp)
copyto!(U,V);
backflow(psi2,U,L*int.eps,7,gp,dpar,lp, ymws,dws)
println("Error:",(sum(dot.(pso,psi2))-foo)/foo)
psi .= pso
end

View file

@ -0,0 +1,119 @@
using LatticeGPU, CUDA, TimerOutputs
#Test for the relation K(t,y;0,n)^+ Dw(n|m)^{-1} e^(ipm) = D(p)^{-1} exp(4t sin^2(p/2)) e^{ipn} with a given momenta (if p=0 its randomized), spin and color
#Kernel en 1207.2096
@timeit "Plw backflow test" begin
function Dwpw_test(;p=0,s=1,c=1)
lp = SpaceParm{4}((16,16,16,16), (4,4,4,4), 0, (0,0,0,0,0,0))
gp = GaugeParm{Float64}(SU3{Float64}, 6.0, 1.0)
dpar = DiracParam{Float64}(SU3fund,1.3,0.0,(1.0,1.0,1.0,1.0),0.0)
dws = DiracWorkspace(SU3fund,Float64,lp);
ymws = YMworkspace(SU3,Float64,lp);
p==0 ? p = Int.(round.(lp.iL.*rand(4),RoundUp)) : nothing
U = fill!(vector_field(SU3{Float64},lp),one(SU3{Float64}))
rm = 2* pi* p./(lp.iL)
rmom=(rm[1],rm[2],rm[3],rm[4])
int = wfl_rk3(Float64, 0.01, 1.0)
Nsteps = 15
@timeit "Generate plane wave" begin
pwave = fill!(scalar_field(Spinor{4,SU3fund{Float64}},lp),zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp))))
prop = scalar_field(Spinor{4,SU3fund{Float64}},lp)
prop_th = fill!(scalar_field(Spinor{4,SU3fund{Float64}},lp),zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp))))
#Generate plane wave
for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4]
CUDA.@allowscalar pwave[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))*Spinor{4,SU3fund{Float64}}(ntuple(i -> (i==s)*SU3fund{Float64}(ntuple(j -> (j==c)*1.0,3)...),4))
end end end end
end
@timeit "Generate analitical solution" begin
#Th solution
if s == 1
vals = (dpar.m0 + 4.0 - sum(cos.(rmom)),0.0,im*sin(rmom[4])+sin(rmom[3]),im*sin(rmom[2])+sin(rmom[1]))
for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4]
CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))*
( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2)
end end end end
elseif s == 2
vals = (0.0,dpar.m0 + 4.0 - sum(cos.(rmom)),sin(rmom[1]) - im *sin(rmom[2]),-sin(rmom[3])+im*sin(rmom[4]))
for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4]
CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))*
( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2)
end end end end
elseif s == 3
vals = (-sin(rmom[3])+im*sin(rmom[4]),-sin(rmom[1])-im*sin(rmom[2]),dpar.m0 + 4.0 - sum(cos.(rmom)),0.0)
for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4]
CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))*
( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2)
end end end end
else
vals = (-sin(rmom[1])+im*sin(rmom[2]),sin(rmom[3])+im*sin(rmom[4]),0.0,dpar.m0 + 4.0 - sum(cos.(rmom)))
for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4]
CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))*
( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2)
end end end end
end
end
prop_th .= exp(-4*Nsteps*int.eps*sum(sin.(rmom./2).^2))*prop_th
#compute Sum{x} D^-1(x|y)P(y)
@timeit "Solving propagator and flowing" begin
function krnlg5!(src)
b=Int64(CUDA.threadIdx().x)
r=Int64(CUDA.blockIdx().x)
src[b,r] = dmul(Gamma{5},src[b,r])
return nothing
end
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(pwave)
end
g5Dw!(prop,U,pwave,dpar,dws,lp)
CG!(prop,U,DwdagDw!,dpar,lp,dws,10000,1.0e-14)
for _ in 1:Nsteps
backflow(U,prop,1,int.eps,gp,dpar,lp, ymws,dws)
end
end
dif = sum(norm2.(prop - prop_th))
return dif
end
begin
dif = 0.0
for i in 1:3 for j in 1:4
dif += Dwpw_test(c=i,s=j)
end end
if dif < 1.0e-5
print("Backflow_tl test passed with average error ", dif/12,"!\n")
else
error("Backflow_tl test failed with difference: ",dif,"\n")
end
end
end

119
test/dirac/test_flow_tl.jl Normal file
View file

@ -0,0 +1,119 @@
using LatticeGPU, CUDA, TimerOutputs
#Test for the relation K(t,y;0,n) Dw(n|m)^{-1} e^(ipm) = D(p)^{-1} exp(-4t sin^2(p/2)) e^{ipn} with a given momenta (if p=0 its randomized), spin and color
#Kernel en 1207.2096
@timeit "Plw flow test" begin
function Dwpw_test(;p=0,s=1,c=1)
lp = SpaceParm{4}((16,16,16,16), (4,4,4,4), 0, (0,0,0,0,0,0))
gp = GaugeParm{Float64}(SU3{Float64}, 6.0, 1.0)
dpar = DiracParam{Float64}(SU3fund,1.3,0.0,(1.0,1.0,1.0,1.0),0.0)
dws = DiracWorkspace(SU3fund,Float64,lp);
ymws = YMworkspace(SU3,Float64,lp);
p==0 ? p = Int.(round.(lp.iL.*rand(4),RoundUp)) : nothing
U = fill!(vector_field(SU3{Float64},lp),one(SU3{Float64}))
rm = 2* pi* p./(lp.iL)
rmom=(rm[1],rm[2],rm[3],rm[4])
int = wfl_rk3(Float64, 0.01, 1.0)
Nsteps = 15
@timeit "Generate plane wave" begin
pwave = fill!(scalar_field(Spinor{4,SU3fund{Float64}},lp),zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp))))
prop = scalar_field(Spinor{4,SU3fund{Float64}},lp)
prop_th = fill!(scalar_field(Spinor{4,SU3fund{Float64}},lp),zero(eltype(scalar_field(Spinor{4,SU3fund{Float64}},lp))))
#Generate plane wave
for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4]
CUDA.@allowscalar pwave[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))*Spinor{4,SU3fund{Float64}}(ntuple(i -> (i==s)*SU3fund{Float64}(ntuple(j -> (j==c)*1.0,3)...),4))
end end end end
end
@timeit "Generate analitical solution" begin
#Th solution
if s == 1
vals = (dpar.m0 + 4.0 - sum(cos.(rmom)),0.0,im*sin(rmom[4])+sin(rmom[3]),im*sin(rmom[2])+sin(rmom[1]))
for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4]
CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))*
( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2)
end end end end
elseif s == 2
vals = (0.0,dpar.m0 + 4.0 - sum(cos.(rmom)),sin(rmom[1]) - im *sin(rmom[2]),-sin(rmom[3])+im*sin(rmom[4]))
for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4]
CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))*
( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2)
end end end end
elseif s == 3
vals = (-sin(rmom[3])+im*sin(rmom[4]),-sin(rmom[1])-im*sin(rmom[2]),dpar.m0 + 4.0 - sum(cos.(rmom)),0.0)
for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4]
CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))*
( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2)
end end end end
else
vals = (-sin(rmom[1])+im*sin(rmom[2]),sin(rmom[3])+im*sin(rmom[4]),0.0,dpar.m0 + 4.0 - sum(cos.(rmom)))
for x in 1:lp.iL[1] for y in 1:lp.iL[2] for z in 1:lp.iL[3] for t in 1:lp.iL[4]
CUDA.@allowscalar prop_th[point_index(CartesianIndex{lp.ndim}((x,y,z,t)),lp)...] = exp(im * (x*rmom[1] + y*rmom[2] + z*rmom[3] + t*rmom[4]))*
( Spinor{4,SU3fund{Float64}}(ntuple(i -> SU3fund{Float64}(ntuple(j -> (j==c)*vals[i],3)...),4)) )/(sum((sin.(rmom)) .^2) + (dpar.m0+ 4.0 - sum(cos.(rmom)))^2)
end end end end
end
end
prop_th .= exp(-4*Nsteps*int.eps*sum(sin.(rmom./2).^2))*prop_th
#compute Sum{x} D^-1(x|y)P(y)
@timeit "Solving propagator and flowing" begin
function krnlg5!(src)
b=Int64(CUDA.threadIdx().x)
r=Int64(CUDA.blockIdx().x)
src[b,r] = dmul(Gamma{5},src[b,r])
return nothing
end
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnlg5!(pwave)
end
g5Dw!(prop,U,pwave,dpar,dws,lp)
CG!(prop,U,DwdagDw!,dpar,lp,dws,10000,1.0e-14)
flw(U, prop, int, Nsteps ,int.eps, gp, dpar, lp, ymws, dws)
end
dif = sum(norm2.(prop - prop_th))
return dif
end
begin
dif = 0.0
for i in 1:3 for j in 1:4
dif += Dwpw_test(c=i,s=j)
end end
if dif < 1.0e-4
print("Flow_tl test passed with average error ", dif/12,"!\n")
else
error("Flow_tl test failed with difference: ",dif,"\n")
end
end
end