Last version

This commit is contained in:
Alberto Ramos 2021-09-04 14:16:22 +02:00
parent c378648508
commit 76d0b66b4b
9 changed files with 515 additions and 322 deletions

View file

@ -9,154 +9,198 @@
### created: Thu Jul 15 15:16:47 2021
###
un(t) = t <: Union{Group, Complex}
function field(::Type{T}, lp::SpaceParm) where {T <: Union{Group, Algebra}}
sz = lp.iL..., lp.ndim
sz = lp.bsz, lp.ndim, lp.rsz
if (T == SU2)
As = StructArray{SU2}((ones(ComplexF64, sz), zeros(ComplexF64, sz)))
# As = StructArray{SU2}(undef, sz, unwrap=un)
return CuArray{SU2, 3}(undef, sz)
elseif (T == SU2alg)
As = StructArray{SU2alg}((zeros(Float64, sz),
zeros(Float64, sz),
zeros(Float64, sz)))
# As = StructArray{SU2alg}(undef, sz, unwrap=un)
return CuArray{SU2alg, 3}(undef, sz)
elseif (T == SU3)
As = StructArray{SU3}((ones(ComplexF64, sz), zeros(ComplexF64, sz), zeros(ComplexF64, sz), zeros(ComplexF64, sz), ones(ComplexF64, sz), zeros(ComplexF64, sz)))
# As = StructArray{SU3}(undef, sz, unwrap=un)
return CuArray{SU3, 3}(undef, sz)
# As = Array{SU3, lp.ndim+1}(undef, sz)
# CUDA.@sync begin
# CUDA.@cuda threads=kp.threads blocks=kp.blocks krnl_SU3_zero!(As, lp)
# end
elseif (T == SU3alg)
As = StructArray{SU3alg}((zeros(Float64, sz),
zeros(Float64, sz),
zeros(Float64, sz),
zeros(Float64, sz),
zeros(Float64, sz),
zeros(Float64, sz),
zeros(Float64, sz),
zeros(Float64, sz)))
# As = StructArray{SU3alg}(undef, sz, unwrap=un)
return CuArray{SU3alg, 3}(undef, sz)
# As = Array{SU3alg, lp.ndim+1}(undef, sz)
# CUDA.@sync begin
# CUDA.@cuda threads=kp.threads blocks=kp.blocks krnl_SU3alg_zero!(As, lp)
# end
end
return replace_storage(CuArray, As)
end
function randomn!(X)
function krnl_SU3_one!(G, lp::SpaceParm)
if (eltype(X) == SU2alg)
randn!(CURAND.default_rng(), LazyRows(X).t1)
randn!(CURAND.default_rng(), LazyRows(X).t2)
randn!(CURAND.default_rng(), LazyRows(X).t3)
elseif (eltype(X) == SU3alg)
randn!(CURAND.default_rng(), LazyRows(X).t1)
randn!(CURAND.default_rng(), LazyRows(X).t2)
randn!(CURAND.default_rng(), LazyRows(X).t3)
randn!(CURAND.default_rng(), LazyRows(X).t4)
randn!(CURAND.default_rng(), LazyRows(X).t5)
randn!(CURAND.default_rng(), LazyRows(X).t6)
randn!(CURAND.default_rng(), LazyRows(X).t7)
randn!(CURAND.default_rng(), LazyRows(X).t8)
end
return nothing
end
function zero!(X)
if (eltype(X) == SU2alg)
fill!(LazyRows(X).t1, 0.0)
fill!(LazyRows(X).t2, 0.0)
fill!(LazyRows(X).t3, 0.0)
end
if (eltype(X) == SU3alg)
fill!(LazyRows(X).t1, 0.0)
fill!(LazyRows(X).t2, 0.0)
fill!(LazyRows(X).t3, 0.0)
fill!(LazyRows(X).t4, 0.0)
fill!(LazyRows(X).t5, 0.0)
fill!(LazyRows(X).t6, 0.0)
fill!(LazyRows(X).t7, 0.0)
fill!(LazyRows(X).t8, 0.0)
# CUDA.@sync begin
# CUDA.@cuda threads=kp.threads blocks=kp.blocks krnl_SU3alg_zero!(X, lp)
# end
end
if (eltype(X) == SU2)
fill!(LazyRows(X).t1, complex(1.0))
fill!(LazyRows(X).t2, complex(0.0))
end
if (eltype(X) == SU3)
fill!(LazyRows(X).u11, complex(1.0))
fill!(LazyRows(X).u12, complex(0.0))
fill!(LazyRows(X).u13, complex(0.0))
fill!(LazyRows(X).u21, complex(0.0))
fill!(LazyRows(X).u22, complex(1.0))
fill!(LazyRows(X).u23, complex(0.0))
# CUDA.@sync begin
# CUDA.@cuda threads=kp.threads blocks=kp.blocks krnl_SU3_zero!(X, lp)
# end
end
return nothing
end
function norm2(X)
d = 0.0
if (eltype(X) == SU2alg)
d = CUDA.mapreduce(x->x^2, +, LazyRows(X).t1) +
CUDA.mapreduce(x->x^2, +, LazyRows(X).t2) +
CUDA.mapreduce(x->x^2, +, LazyRows(X).t3)
elseif (eltype(X) == SU3alg)
d = CUDA.mapreduce(x->x^2, +, LazyRows(X).t1) +
CUDA.mapreduce(x->x^2, +, LazyRows(X).t2) +
CUDA.mapreduce(x->x^2, +, LazyRows(X).t3) +
CUDA.mapreduce(x->x^2, +, LazyRows(X).t4) +
CUDA.mapreduce(x->x^2, +, LazyRows(X).t5) +
CUDA.mapreduce(x->x^2, +, LazyRows(X).t6) +
CUDA.mapreduce(x->x^2, +, LazyRows(X).t7) +
CUDA.mapreduce(x->x^2, +, LazyRows(X).t8)
# d = CUDA.mapreduce(norm2, +, X)
end
return d
end
function krnl_SU3_zero!(G, lp::SpaceParm)
X = map2latt((CUDA.threadIdx().x,CUDA.threadIdx().y,CUDA.threadIdx().z),
(CUDA.blockIdx().x,CUDA.blockIdx().y,CUDA.blockIdx().z))
b, r = CUDA.threadIdx().x, CUDA.blockIdx().x
for id in 1:lp.ndim
G[X,id].u11 = complex(1.0)
G[X,id].u12 = complex(0.0)
G[X,id].u13 = complex(0.0)
G[X,id].u21 = complex(0.0)
G[X,id].u22 = complex(1.0)
G[X,id].u23 = complex(0.0)
G[b,id,r] = SU3(1.0,0.0,0.0,0.0,1.0,0.0)
end
return nothing
end
function krnl_SU2_one!(G, lp::SpaceParm)
b, r = CUDA.threadIdx().x, CUDA.blockIdx().x
for id in 1:lp.ndim
G[b,id,r] = SU2(1.0,0.0)
end
return nothing
end
function krnl_SU3alg_zero!(G, lp::SpaceParm)
X = map2latt((CUDA.threadIdx().x,CUDA.threadIdx().y,CUDA.threadIdx().z),
(CUDA.blockIdx().x,CUDA.blockIdx().y,CUDA.blockIdx().z))
b, r = CUDA.threadIdx().x, CUDA.blockIdx().x
for id in 1:lp.ndim
G[X,id].t1 = 0.0
G[X,id].t2 = 0.0
G[X,id].t3 = 0.0
G[X,id].t4 = 0.0
G[X,id].t5 = 0.0
G[X,id].t6 = 0.0
G[X,id].t7 = 0.0
G[X,id].t8 = 0.0
G[b,id,r] = SU3alg(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
end
return nothing
end
function krnl_SU2alg_zero!(G, lp::SpaceParm)
b, r = CUDA.threadIdx().x, CUDA.blockIdx().x
for id in 1:lp.ndim
G[b,id,r] = SU2alg(0.0,0.0,0.0)
end
return nothing
end
function krnl_SU3alg_assign!(G, M, lp::SpaceParm)
b, r = CUDA.threadIdx().x, CUDA.blockIdx().x
for id in 1:lp.ndim
G[b,id,r] = SU3alg(M[b,id,r,1], M[b,id,r,2], M[b,id,r,3], M[b,id,r,4],
M[b,id,r,5], M[b,id,r,6], M[b,id,r,7], M[b,id,r,8])
end
return nothing
end
function krnl_SU2alg_assign!(G, M, lp::SpaceParm)
b, r = CUDA.threadIdx().x, CUDA.blockIdx().x
for id in 1:lp.ndim
G[b,id,r] = SU2alg(M[b,id,r,1], M[b,id,r,2], M[b,id,r,3])
end
return nothing
end
function randomn!(X, lp)
if (eltype(X) == SU2alg)
# randn!(CURAND.default_rng(), LazyRows(X).t1)
# randn!(CURAND.default_rng(), LazyRows(X).t2)
# randn!(CURAND.default_rng(), LazyRows(X).t3)
M = CuArray{Float64}(undef, lp.bsz, lp.ndim, lp.rsz, 3)
randn!(CURAND.default_rng(), M)
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_SU2alg_assign!(X, M, lp)
end
elseif (eltype(X) == SU3alg)
# randn!(CURAND.default_rng(), LazyRows(X).t1)
# randn!(CURAND.default_rng(), LazyRows(X).t2)
# randn!(CURAND.default_rng(), LazyRows(X).t3)
# randn!(CURAND.default_rng(), LazyRows(X).t4)
# randn!(CURAND.default_rng(), LazyRows(X).t5)
# randn!(CURAND.default_rng(), LazyRows(X).t6)
# randn!(CURAND.default_rng(), LazyRows(X).t7)
# randn!(CURAND.default_rng(), LazyRows(X).t8)
M = CuArray{Float64}(undef, lp.bsz, lp.ndim, lp.rsz, 8)
randn!(CURAND.default_rng(), M)
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_SU3alg_assign!(X, M, lp)
end
end
return nothing
end
function zero!(X, lp)
if (eltype(X) == SU2alg)
# fill!(LazyRows(X).t1, 0.0)
# fill!(LazyRows(X).t2, 0.0)
# fill!(LazyRows(X).t3, 0.0)
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_SU2alg_zero!(X, lp)
end
end
if (eltype(X) == SU3alg)
# fill!(LazyRows(X).t1, 0.0)
# fill!(LazyRows(X).t2, 0.0)
# fill!(LazyRows(X).t3, 0.0)
# fill!(LazyRows(X).t4, 0.0)
# fill!(LazyRows(X).t5, 0.0)
# fill!(LazyRows(X).t6, 0.0)
# fill!(LazyRows(X).t7, 0.0)
# fill!(LazyRows(X).t8, 0.0)
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_SU3alg_zero!(X, lp)
end
end
if (eltype(X) == SU2)
# fill!(LazyRows(X).t1.re, 1.0)
# fill!(LazyRows(X).t1.im, 0.0)
# fill!(LazyRows(X).t2.re, 0.0)
# fill!(LazyRows(X).t2.im, 0.0)
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_SU2_one!(X, lp)
end
end
if (eltype(X) == SU3)
# fill!(LazyRows(X).u11.re, 1.0)
# fill!(LazyRows(X).u11.im, 0.0)
# fill!(LazyRows(X).u12.re, 0.0)
# fill!(LazyRows(X).u12.im, 0.0)
# fill!(LazyRows(X).u13.re, 0.0)
# fill!(LazyRows(X).u13.im, 0.0)
# fill!(LazyRows(X).u21.re, 0.0)
# fill!(LazyRows(X).u21.im, 0.0)
# fill!(LazyRows(X).u22.re, 1.0)
# fill!(LazyRows(X).u22.im, 0.0)
# fill!(LazyRows(X).u23.re, 0.0)
# fill!(LazyRows(X).u23.im, 0.0)
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_SU3_one!(X, lp)
end
end
return nothing
end
function norm_field(X)
return CUDA.mapreduce(norm2, +, X)
# d = 0.0
if (eltype(X) == SU2alg)
# d = CUDA.mapreduce(x->x^2, +, LazyRows(X).t1) +
# CUDA.mapreduce(x->x^2, +, LazyRows(X).t2) +
# CUDA.mapreduce(x->x^2, +, LazyRows(X).t3)
elseif (eltype(X) == SU3alg)
# d = CUDA.mapreduce(x->x^2, +, LazyRows(X).t1) +
# CUDA.mapreduce(x->x^2, +, LazyRows(X).t2) +
# CUDA.mapreduce(x->x^2, +, LazyRows(X).t3) +
# CUDA.mapreduce(x->x^2, +, LazyRows(X).t4) +
# CUDA.mapreduce(x->x^2, +, LazyRows(X).t5) +
# CUDA.mapreduce(x->x^2, +, LazyRows(X).t6) +
# CUDA.mapreduce(x->x^2, +, LazyRows(X).t7) +
# CUDA.mapreduce(x->x^2, +, LazyRows(X).t8)
d = CUDA.mapreduce(norm2, +, X)
end
return d
end