mirror of
https://igit.ific.uv.es/alramos/latticegpu.jl.git
synced 2025-05-14 19:23:42 +02:00
Added documentation for most modules
Only Spinors and Dirac are missing.
This commit is contained in:
parent
b4a269f9af
commit
651891f95a
16 changed files with 298 additions and 19 deletions
|
@ -9,6 +9,10 @@ makedocs(sitename="LatticeGPU", modules=[LatticeGPU], doctest=true,
|
||||||
"LatticeGPU.jl" => "index.md",
|
"LatticeGPU.jl" => "index.md",
|
||||||
"Space-time" => "space.md",
|
"Space-time" => "space.md",
|
||||||
"Groups and algebras" => "groups.md",
|
"Groups and algebras" => "groups.md",
|
||||||
"Fields" => "fields.md"
|
"Fields" => "fields.md",
|
||||||
|
"Yang-Mills" => "ym.md",
|
||||||
|
"Gradient flow" => "flow.md",
|
||||||
|
"Schrödinger Functional" => "sf.md",
|
||||||
|
"Input Output" => "io.md"
|
||||||
],
|
],
|
||||||
repo = "https://igit.ific.uv.es/alramos/latticegpu.jl")
|
repo = "https://igit.ific.uv.es/alramos/latticegpu.jl")
|
||||||
|
|
|
@ -10,10 +10,11 @@ gauge fields `SU3`, for scalar fields `Float64`). We have:
|
||||||
direction.
|
direction.
|
||||||
- `N` scalar fields: `N` elemental types at each spacetime point.
|
- `N` scalar fields: `N` elemental types at each spacetime point.
|
||||||
|
|
||||||
For all these fields the spacetime point are ordered in memory
|
Fields can have **naturaL indexing**, where the memory layout follows
|
||||||
according to the point-in-block and block indices (see
|
the point-in-block and block indices (see
|
||||||
[`SpaceParm`](@ref)). An execption is the [`scalar_field_point`](@ref)
|
[`SpaceParm`](@ref)). Fields can also have **lexicographic indexing**,
|
||||||
fields.
|
where points are labelled by a D-dimensional index (see [`scalar_field_point`](@ref)).
|
||||||
|
|
||||||
|
|
||||||
## Initialization
|
## Initialization
|
||||||
|
|
||||||
|
|
47
docs/src/flow.md
Normal file
47
docs/src/flow.md
Normal file
|
@ -0,0 +1,47 @@
|
||||||
|
# Gradient flow
|
||||||
|
|
||||||
|
The gradient flow equations can be integrated in two different ways:
|
||||||
|
1. Using a fixed step-size integrator. In this approach one fixes the
|
||||||
|
step size $\epsilon$ and the links are evolved from
|
||||||
|
$V_\mu(t)$ to $V_\mu(t +\epsilon)$ using some integration
|
||||||
|
scheme.
|
||||||
|
1. Using an adaptive step-size integrator. In this approach one fixes
|
||||||
|
the tolerance $h$ and the links are evolved for a time $t_{\rm
|
||||||
|
end}$ (i.e. from $V_\mu(t)$ to $V_\mu(t +t_{\rm end})$)
|
||||||
|
with the condition that the maximum error while advancing is not
|
||||||
|
larger than $h$.
|
||||||
|
|
||||||
|
In general adaptive step size integrators are much more efficient, but
|
||||||
|
one loses the possibility to measure flow quantities at the
|
||||||
|
intermediate times $\epsilon, 2\epsilon, 3\epsilon,...$. Adaptive
|
||||||
|
step size integrators are ideal for finite size scaling studies, while
|
||||||
|
a mix of both integrators is the most efficient approach in scale
|
||||||
|
setting applications.
|
||||||
|
|
||||||
|
## Integration schemes
|
||||||
|
|
||||||
|
```@docs
|
||||||
|
FlowIntr
|
||||||
|
wfl_euler
|
||||||
|
zfl_euler
|
||||||
|
wfl_rk2
|
||||||
|
zfl_rk2
|
||||||
|
wfl_rk3
|
||||||
|
zfl_rk3
|
||||||
|
```
|
||||||
|
|
||||||
|
## Integrating the flow equations
|
||||||
|
|
||||||
|
```@docs
|
||||||
|
flw
|
||||||
|
flw_adapt
|
||||||
|
```
|
||||||
|
|
||||||
|
## Observables
|
||||||
|
|
||||||
|
```@docs
|
||||||
|
Eoft_plaq
|
||||||
|
Eoft_clover
|
||||||
|
Qtop
|
||||||
|
```
|
||||||
|
|
|
@ -153,6 +153,10 @@ projalg
|
||||||
## Generic `Algebra` methods
|
## Generic `Algebra` methods
|
||||||
|
|
||||||
```@docs
|
```@docs
|
||||||
|
dot
|
||||||
|
norm
|
||||||
|
norm2
|
||||||
|
normalize
|
||||||
exp
|
exp
|
||||||
expm
|
expm
|
||||||
alg2mat
|
alg2mat
|
||||||
|
|
14
docs/src/io.md
Normal file
14
docs/src/io.md
Normal file
|
@ -0,0 +1,14 @@
|
||||||
|
|
||||||
|
# Input/Output
|
||||||
|
|
||||||
|
## Configurations
|
||||||
|
|
||||||
|
Routines to read/write and import gauge configurations.
|
||||||
|
```@docs
|
||||||
|
read_cnfg
|
||||||
|
save_cnfg
|
||||||
|
import_bsfqcd
|
||||||
|
import_lex64
|
||||||
|
import_cern64
|
||||||
|
```
|
||||||
|
|
9
docs/src/sf.md
Normal file
9
docs/src/sf.md
Normal file
|
@ -0,0 +1,9 @@
|
||||||
|
# Schödinger Functional
|
||||||
|
|
||||||
|
Specific SF observables and routines
|
||||||
|
|
||||||
|
```@docs
|
||||||
|
setbndfield
|
||||||
|
sfcoupling
|
||||||
|
```
|
||||||
|
|
|
@ -3,7 +3,10 @@
|
||||||
|
|
||||||
D-dimensional lattice points are labeled by two ordered integer
|
D-dimensional lattice points are labeled by two ordered integer
|
||||||
numbers: the point-in-block index ($$b$$ in the figure below) and the
|
numbers: the point-in-block index ($$b$$ in the figure below) and the
|
||||||
block index ($$r$$ in the figure below). The routines [`up`](@ref) and
|
block index ($$r$$ in the figure below). This is called **natural
|
||||||
|
indexing**, in contrast with the **lexicographic indexing** where points on
|
||||||
|
the lattice are represented by a D-dimensional `CartesianIndex`.
|
||||||
|
The routines [`up`](@ref) and
|
||||||
[`dw`](@ref) allow you to displace to the neighboring points of the
|
[`dw`](@ref) allow you to displace to the neighboring points of the
|
||||||
lattice.
|
lattice.
|
||||||
![D dimensional lattice points are labeled by its
|
![D dimensional lattice points are labeled by its
|
||||||
|
|
59
docs/src/ym.md
Normal file
59
docs/src/ym.md
Normal file
|
@ -0,0 +1,59 @@
|
||||||
|
|
||||||
|
# Simulating Yang-Mills on the lattice
|
||||||
|
|
||||||
|
```@docs
|
||||||
|
GaugeParm
|
||||||
|
YMworkspace
|
||||||
|
ztwist
|
||||||
|
```
|
||||||
|
|
||||||
|
## Gauge actions and forces
|
||||||
|
|
||||||
|
Routines to compute the gauge action.
|
||||||
|
```@docs
|
||||||
|
gauge_action
|
||||||
|
```
|
||||||
|
|
||||||
|
Routines to compute the force derived from gauge actions.
|
||||||
|
|
||||||
|
```@docs
|
||||||
|
force_gauge
|
||||||
|
```
|
||||||
|
|
||||||
|
### Force field refresh
|
||||||
|
|
||||||
|
Algebra fields with **natural indexing** can be randomized.
|
||||||
|
```@docs
|
||||||
|
randomize!
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Basic observables
|
||||||
|
|
||||||
|
Some basic observable.
|
||||||
|
```@docs
|
||||||
|
plaquette
|
||||||
|
```
|
||||||
|
|
||||||
|
## HMC simulations
|
||||||
|
|
||||||
|
### Integrating the EOM
|
||||||
|
|
||||||
|
```@docs
|
||||||
|
IntrScheme
|
||||||
|
leapfrog
|
||||||
|
omf2
|
||||||
|
omf4
|
||||||
|
MD!
|
||||||
|
```
|
||||||
|
|
||||||
|
### HMC algorithm
|
||||||
|
|
||||||
|
```@docs
|
||||||
|
hamiltonian
|
||||||
|
HMC!
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -40,6 +40,7 @@ include("YM/YM.jl")
|
||||||
using .YM
|
using .YM
|
||||||
export ztwist
|
export ztwist
|
||||||
export YMworkspace, GaugeParm, force0_wilson!, field, field_pln, randomize!, zero!, norm2
|
export YMworkspace, GaugeParm, force0_wilson!, field, field_pln, randomize!, zero!, norm2
|
||||||
|
export force_gauge, MD!
|
||||||
export gauge_action, hamiltonian, plaquette, HMC!, OMF4!
|
export gauge_action, hamiltonian, plaquette, HMC!, OMF4!
|
||||||
export Eoft_clover, Eoft_plaq, Qtop
|
export Eoft_clover, Eoft_plaq, Qtop
|
||||||
export FlowIntr, wfl_euler, zfl_euler, wfl_rk2, zfl_rk2, wfl_rk3, zfl_rk3
|
export FlowIntr, wfl_euler, zfl_euler, wfl_rk2, zfl_rk2, wfl_rk3, zfl_rk3
|
||||||
|
|
20
src/MD/MD.jl
20
src/MD/MD.jl
|
@ -24,6 +24,11 @@ const r1omf2 = 0.1931833275037836
|
||||||
const r2omf2 = 0.5
|
const r2omf2 = 0.5
|
||||||
const r3omf2 = 1 - 2*r1omf2
|
const r3omf2 = 1 - 2*r1omf2
|
||||||
|
|
||||||
|
"""
|
||||||
|
struct IntrScheme{N, T}
|
||||||
|
|
||||||
|
Integrator for the molecular dynamics.
|
||||||
|
"""
|
||||||
struct IntrScheme{N, T}
|
struct IntrScheme{N, T}
|
||||||
r::NTuple{N, T}
|
r::NTuple{N, T}
|
||||||
eps::T
|
eps::T
|
||||||
|
@ -31,8 +36,23 @@ struct IntrScheme{N, T}
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
omf2(::Type{T}, eps, ns)
|
||||||
|
|
||||||
|
Second order Omelyan integrator with `eps` stepsize and `ns` steps.
|
||||||
|
"""
|
||||||
omf2(::Type{T}, eps, ns) where T = IntrScheme{3,T}((r1omf2,r2omf2,r3omf2), eps, ns)
|
omf2(::Type{T}, eps, ns) where T = IntrScheme{3,T}((r1omf2,r2omf2,r3omf2), eps, ns)
|
||||||
|
"""
|
||||||
|
omf4(::Type{T}, eps, ns)
|
||||||
|
|
||||||
|
Fourth order Omelyan integrator with `eps` stepsize and `ns` steps.
|
||||||
|
"""
|
||||||
omf4(::Type{T}, eps, ns) where T = IntrScheme{6,T}((r1omf4,r2omf4,r3omf4,r4omf4,r5omf4,r6omf4), eps, ns)
|
omf4(::Type{T}, eps, ns) where T = IntrScheme{6,T}((r1omf4,r2omf4,r3omf4,r4omf4,r5omf4,r6omf4), eps, ns)
|
||||||
|
"""
|
||||||
|
leapfrog(::Type{T}, eps, ns)
|
||||||
|
|
||||||
|
Leapfrog integrator with `eps` stepsize and `ns` steps.
|
||||||
|
"""
|
||||||
leapfrog(::Type{T}, eps, ns) where T = IntrScheme{2,T}((0.5,1.0), eps, ns)
|
leapfrog(::Type{T}, eps, ns) where T = IntrScheme{2,T}((0.5,1.0), eps, ns)
|
||||||
|
|
||||||
|
|
||||||
|
|
36
src/YM/YM.jl
36
src/YM/YM.jl
|
@ -20,6 +20,19 @@ using ..MD
|
||||||
|
|
||||||
import Base.show
|
import Base.show
|
||||||
|
|
||||||
|
"""
|
||||||
|
struct GaugeParm{T,G,N}
|
||||||
|
|
||||||
|
Structure containning the parameters of a pure gauge simulation. These are:
|
||||||
|
- beta: Type `T`. The bare coupling of the simulation
|
||||||
|
- c0: Type `T`. LatticeGPU supports the simulation of gauge actions made of 1x1 Wilson Loops and 2x1 Wilson loops. The parameter c0 defines the coefficient on the simulation of the 1x1 loops. Some common choices are:
|
||||||
|
- c0=1: Wilson plaquette action
|
||||||
|
- c0=5/3: Tree-level improved Lüscher-Weisz action.
|
||||||
|
- c0=3.648: Iwasaki gauge action
|
||||||
|
- cG: Tuple (`T`, `T`). Boundary improvement parameters.
|
||||||
|
- ng: `Int64`. Rank of the gauge group.
|
||||||
|
- Ubnd: Boundary field for SF boundary conditions
|
||||||
|
"""
|
||||||
struct GaugeParm{T,G,N}
|
struct GaugeParm{T,G,N}
|
||||||
beta::T
|
beta::T
|
||||||
c0::T
|
c0::T
|
||||||
|
@ -63,6 +76,21 @@ function Base.show(io::IO, gp::GaugeParm{T, G, N}) where {T,G,N}
|
||||||
return nothing
|
return nothing
|
||||||
end
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
struct YMworkspace{T}
|
||||||
|
|
||||||
|
Structure containing memory workspace that is resused by different routines in order to avoid allocating/deallocating time.
|
||||||
|
The parameter `T` represents the precision of the simulation (i.e. single/double). The structure contains the following components
|
||||||
|
- GRP: Group being simulated
|
||||||
|
- ALG: Corresponding Algebra
|
||||||
|
- PRC: Precision (i.e. `T`)
|
||||||
|
- frc1: Algebra field with natural indexing.
|
||||||
|
- frc2: Algebra field with natural indexing.
|
||||||
|
- mom: Algebra field with natural indexing.
|
||||||
|
- U1: Group field with natural indexing.
|
||||||
|
- cm: Complex field with lexicographic indexing.
|
||||||
|
- rm: Real field with lexicographic indexing.
|
||||||
|
"""
|
||||||
struct YMworkspace{T}
|
struct YMworkspace{T}
|
||||||
GRP
|
GRP
|
||||||
ALG
|
ALG
|
||||||
|
@ -110,7 +138,11 @@ function Base.show(io::IO, ymws::YMworkspace)
|
||||||
return nothing
|
return nothing
|
||||||
end
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}[, ipl])
|
||||||
|
|
||||||
|
Returns the twist factor. If a plane index is passed, returns the twist factor as a complex{T}. If this is not provided, returns a tuple, containing the factor of each plane.
|
||||||
|
"""
|
||||||
function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}) where {T,G,N,M,B,D}
|
function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}) where {T,G,N,M,B,D}
|
||||||
|
|
||||||
function plnf(ipl)
|
function plnf(ipl)
|
||||||
|
@ -133,10 +165,10 @@ include("YMfields.jl")
|
||||||
export randomize!, zero!, norm2
|
export randomize!, zero!, norm2
|
||||||
|
|
||||||
include("YMact.jl")
|
include("YMact.jl")
|
||||||
export krnl_plaq!, force0_wilson!
|
export krnl_plaq!, force_gauge, force_wilson
|
||||||
|
|
||||||
include("YMhmc.jl")
|
include("YMhmc.jl")
|
||||||
export gauge_action, hamiltonian, plaquette, HMC!, OMF4!
|
export gauge_action, hamiltonian, plaquette, HMC!, MD!
|
||||||
|
|
||||||
include("YMflow.jl")
|
include("YMflow.jl")
|
||||||
export FlowIntr, flw, flw_adapt
|
export FlowIntr, flw, flw_adapt
|
||||||
|
|
|
@ -335,9 +335,9 @@ function krnl_force_impr_pln!(frc1, frc2, U::AbstractArray{T}, c0, c1, Ubnd, cG,
|
||||||
end
|
end
|
||||||
|
|
||||||
"""
|
"""
|
||||||
function force_wilson(ymws::YMworkspace, U, lp::SpaceParm)
|
function force_gauge(ymws::YMworkspace, U, gp::GaugeParm, lp::SpaceParm)
|
||||||
|
|
||||||
Computes the force deriving from the Wilson plaquette action, without
|
Computes the force deriving from an improved action with parameter `c0`, without
|
||||||
the prefactor 1/g0^2, and assign it to the workspace force `ymws.frc1`
|
the prefactor 1/g0^2, and assign it to the workspace force `ymws.frc1`
|
||||||
"""
|
"""
|
||||||
function force_gauge(ymws::YMworkspace, U, c0, cG, gp::GaugeParm, lp::SpaceParm)
|
function force_gauge(ymws::YMworkspace, U, c0, cG, gp::GaugeParm, lp::SpaceParm)
|
||||||
|
@ -354,8 +354,15 @@ function force_gauge(ymws::YMworkspace, U, c0, cG, gp::GaugeParm, lp::SpaceParm)
|
||||||
end
|
end
|
||||||
return nothing
|
return nothing
|
||||||
end
|
end
|
||||||
|
|
||||||
force_gauge(ymws::YMworkspace, U, c0, gp, lp) = force_gauge(ymws, U, c0, gp.cG[1], gp, lp)
|
force_gauge(ymws::YMworkspace, U, c0, gp, lp) = force_gauge(ymws, U, c0, gp.cG[1], gp, lp)
|
||||||
|
force_gauge(ymws::YMworkspace, U, gp, lp) = force_gauge(ymws, U, gp.c0, gp.cG[1], gp, lp)
|
||||||
|
|
||||||
|
"""
|
||||||
|
function force_wilson(ymws::YMworkspace, U, gp::GaugeParm, lp::SpaceParm)
|
||||||
|
|
||||||
|
Computes the force deriving from the Wilson plaquette action, without
|
||||||
|
the prefactor 1/g0^2, and assign it to the workspace force `ymws.frc1`
|
||||||
|
"""
|
||||||
force_wilson(ymws::YMworkspace, U, gp::GaugeParm, lp::SpaceParm) = force_gauge(ymws, U, 1, gp, lp)
|
force_wilson(ymws::YMworkspace, U, gp::GaugeParm, lp::SpaceParm) = force_gauge(ymws, U, 1, gp, lp)
|
||||||
force_wilson(ymws::YMworkspace, U, cG, gp::GaugeParm, lp::SpaceParm) = force_gauge(ymws, U, 1, gp.cG[1], gp, lp)
|
force_wilson(ymws::YMworkspace, U, cG, gp::GaugeParm, lp::SpaceParm) = force_gauge(ymws, U, 1, gp.cG[1], gp, lp)
|
||||||
|
|
||||||
|
|
|
@ -9,6 +9,11 @@
|
||||||
### created: Thu Jul 15 15:16:47 2021
|
### created: Thu Jul 15 15:16:47 2021
|
||||||
###
|
###
|
||||||
|
|
||||||
|
"""
|
||||||
|
function randomize!(f, lp::SpaceParm, ymws::YMworkspace)
|
||||||
|
|
||||||
|
Given an algebra field with natural indexing, this routine sets the components to random Gaussian distributed values. If SF boundary conditions are used, the force at the boundaries is set to zero.
|
||||||
|
"""
|
||||||
function randomize!(f, lp::SpaceParm, ymws::YMworkspace)
|
function randomize!(f, lp::SpaceParm, ymws::YMworkspace)
|
||||||
|
|
||||||
if ymws.ALG == SU2alg
|
if ymws.ALG == SU2alg
|
||||||
|
|
|
@ -10,6 +10,11 @@
|
||||||
###
|
###
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
struct FlowIntr{N,T}
|
||||||
|
|
||||||
|
Structure containing info about a particular flow integrator
|
||||||
|
"""
|
||||||
struct FlowIntr{N,T}
|
struct FlowIntr{N,T}
|
||||||
r::T
|
r::T
|
||||||
e0::NTuple{N,T}
|
e0::NTuple{N,T}
|
||||||
|
@ -26,11 +31,46 @@ struct FlowIntr{N,T}
|
||||||
end
|
end
|
||||||
|
|
||||||
# pre-defined integrators
|
# pre-defined integrators
|
||||||
|
"""
|
||||||
|
wfl_euler(::Type{T}, eps::T, tol::T)
|
||||||
|
|
||||||
|
Euler scheme integrator for the Wilson Flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`.
|
||||||
|
"""
|
||||||
wfl_euler(::Type{T}, eps::T, tol::T) where T = FlowIntr{0,T}(one(T),(),(),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10)
|
wfl_euler(::Type{T}, eps::T, tol::T) where T = FlowIntr{0,T}(one(T),(),(),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10)
|
||||||
|
|
||||||
|
"""
|
||||||
|
zfl_euler(::Type{T}, eps::T, tol::T)
|
||||||
|
|
||||||
|
Euler scheme integrator for the Zeuthen flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`.
|
||||||
|
"""
|
||||||
zfl_euler(::Type{T}, eps::T, tol::T) where T = FlowIntr{0,T}(one(T),(),(),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10)
|
zfl_euler(::Type{T}, eps::T, tol::T) where T = FlowIntr{0,T}(one(T),(),(),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10)
|
||||||
|
|
||||||
|
"""
|
||||||
|
wfl_rk2(::Type{T}, eps::T, tol::T)
|
||||||
|
|
||||||
|
Second order Runge-Kutta integrator for the Wilson flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`.
|
||||||
|
"""
|
||||||
wfl_rk2(::Type{T}, eps::T, tol::T) where T = FlowIntr{1,T}(one(T)/2,(-one(T)/2,),(one(T),),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10)
|
wfl_rk2(::Type{T}, eps::T, tol::T) where T = FlowIntr{1,T}(one(T)/2,(-one(T)/2,),(one(T),),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10)
|
||||||
|
|
||||||
|
"""
|
||||||
|
zfl_rk2(::Type{T}, eps::T, tol::T)
|
||||||
|
|
||||||
|
Second order Runge-Kutta integrator for the Zeuthen flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`.
|
||||||
|
"""
|
||||||
zfl_rk2(::Type{T}, eps::T, tol::T) where T = FlowIntr{1,T}(one(T)/2,(-one(T)/2,),(one(T),),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10)
|
zfl_rk2(::Type{T}, eps::T, tol::T) where T = FlowIntr{1,T}(one(T)/2,(-one(T)/2,),(one(T),),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10)
|
||||||
|
|
||||||
|
"""
|
||||||
|
wfl_rk3(::Type{T}, eps::T, tol::T)
|
||||||
|
|
||||||
|
Third order Runge-Kutta integrator for the Wilson flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`.
|
||||||
|
"""
|
||||||
wfl_rk3(::Type{T}, eps::T, tol::T) where T = FlowIntr{2,T}(one(T)/4,(-17/36,-one(T)),(8/9,3/4),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10)
|
wfl_rk3(::Type{T}, eps::T, tol::T) where T = FlowIntr{2,T}(one(T)/4,(-17/36,-one(T)),(8/9,3/4),false,one(T),eps,tol,one(T)/200,one(T)/10,9/10)
|
||||||
|
|
||||||
|
"""
|
||||||
|
Zfl_rk3(::Type{T}, eps::T, tol::T)
|
||||||
|
|
||||||
|
Third order Runge-Kutta integrator for the Zeuthen flow. The fixed step size is given by `eps` and the tolerance for the adaptive integrators by `tol`.
|
||||||
|
"""
|
||||||
zfl_rk3(::Type{T}, eps::T, tol::T) where T = FlowIntr{2,T}(one(T)/4,(-17/36,-one(T)),(8/9,3/4),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10)
|
zfl_rk3(::Type{T}, eps::T, tol::T) where T = FlowIntr{2,T}(one(T)/4,(-17/36,-one(T)),(8/9,3/4),true, (one(T)*5)/3,eps,tol,one(T)/200,one(T)/10,9/10)
|
||||||
|
|
||||||
function Base.show(io::IO, int::FlowIntr{N,T}) where {N,T}
|
function Base.show(io::IO, int::FlowIntr{N,T}) where {N,T}
|
||||||
|
@ -122,6 +162,11 @@ function krnl_add_zth!(frc, frc2::AbstractArray{TA}, U::AbstractArray{TG}, lp::S
|
||||||
return nothing
|
return nothing
|
||||||
end
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
function flw(U, int::FlowIntr{NI,T}, ns::Int64, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace)
|
||||||
|
|
||||||
|
Integrates the flow equations with the integration scheme defined by `int` performing `ns` steps with fixed step size. The configuration `U` is overwritten.
|
||||||
|
"""
|
||||||
function flw(U, int::FlowIntr{NI,T}, ns::Int64, eps, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T}
|
function flw(U, int::FlowIntr{NI,T}, ns::Int64, eps, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T}
|
||||||
@timeit "Integrating flow equations" begin
|
@timeit "Integrating flow equations" begin
|
||||||
for i in 1:ns
|
for i in 1:ns
|
||||||
|
@ -152,6 +197,11 @@ flw(U, int::FlowIntr{NI,T}, ns::Int64, gp::GaugeParm, lp::SpaceParm, ymws::YMwor
|
||||||
# Adaptive step size integrators
|
# Adaptive step size integrators
|
||||||
##
|
##
|
||||||
|
|
||||||
|
"""
|
||||||
|
function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace)
|
||||||
|
|
||||||
|
Integrates the flow equations with the integration scheme defined by `int` using the adaptive step size integrator up to `tend` with the tolerance defined in `int`. The configuration `U` is overwritten.
|
||||||
|
"""
|
||||||
function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T}
|
function flw_adapt(U, int::FlowIntr{NI,T}, tend::T, epsini::T, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace) where {NI,T}
|
||||||
|
|
||||||
eps = int.eps_ini
|
eps = int.eps_ini
|
||||||
|
@ -201,7 +251,7 @@ flw_adapt(U, int::FlowIntr{NI,T}, tend::T, gp::GaugeParm, lp::SpaceParm, ymws::Y
|
||||||
"""
|
"""
|
||||||
function Eoft_plaq([Eslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace)
|
function Eoft_plaq([Eslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace)
|
||||||
|
|
||||||
Measure the action density `E(t)` using the plaquette discretization. If the argument `Eslc`
|
Measure the action density `E(t)` using the plaquette discretization. If the argument `Eslc` is given
|
||||||
the contribution for each Euclidean time slice and plane are returned.
|
the contribution for each Euclidean time slice and plane are returned.
|
||||||
"""
|
"""
|
||||||
function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws::YMworkspace) where {T,G,NN,N,M,B,D}
|
function Eoft_plaq(Eslc, U, gp::GaugeParm{T,G,NN}, lp::SpaceParm{N,M,B,D}, ymws::YMworkspace) where {T,G,NN,N,M,B,D}
|
||||||
|
@ -277,10 +327,9 @@ function krnl_plaq_pln!(plx, U::AbstractArray{T}, Ubnd, ztw, ipl, lp::SpaceParm{
|
||||||
end
|
end
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Qtop([Qslc,] U, lp, ymws)
|
Qtop([Qslc,] U, gp::GaugeParm, lp::SpaceParm, ymws::YMworkspace)
|
||||||
|
|
||||||
Measure the topological charge `Q` of the configuration `U`. If the argument `Qslc` is present
|
Measure the topological charge `Q` of the configuration `U` using the clover definition of the field strength tensor. If the argument `Qslc` is present the contribution for each Euclidean time slice are returned. Only wors in 4D.
|
||||||
the contribution for each Euclidean time slice are returned.
|
|
||||||
"""
|
"""
|
||||||
function Qtop(Qslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace) where {M,B,D}
|
function Qtop(Qslc, U, gp::GaugeParm, lp::SpaceParm{4,M,B,D}, ymws::YMworkspace) where {M,B,D}
|
||||||
|
|
||||||
|
|
|
@ -13,7 +13,7 @@
|
||||||
|
|
||||||
function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace)
|
function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace)
|
||||||
|
|
||||||
Returns the value of the gauge plaquette action for the configuration U. The parameters `\beta` and `c0` are taken from the `gp` structure.
|
Returns the value of the gauge action for the configuration U. The parameters `\beta` and `c0` are taken from the `gp` structure.
|
||||||
"""
|
"""
|
||||||
function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) where T <: AbstractFloat
|
function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) where T <: AbstractFloat
|
||||||
|
|
||||||
|
@ -37,6 +37,11 @@ function gauge_action(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) whe
|
||||||
return S
|
return S
|
||||||
end
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
function plaquette(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace)
|
||||||
|
|
||||||
|
Computes the average plaquette for the configuration `U`.
|
||||||
|
"""
|
||||||
function plaquette(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace) where {N,M,B,D}
|
function plaquette(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace) where {N,M,B,D}
|
||||||
|
|
||||||
ztw = ztwist(gp, lp)
|
ztw = ztwist(gp, lp)
|
||||||
|
@ -49,6 +54,11 @@ function plaquette(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace)
|
||||||
return CUDA.mapreduce(real, +, ymws.cm)/(prod(lp.iL)*lp.npls)
|
return CUDA.mapreduce(real, +, ymws.cm)/(prod(lp.iL)*lp.npls)
|
||||||
end
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
function hamiltonian(mom, U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace)
|
||||||
|
|
||||||
|
Returns the Energy ``H = \\frac{p^2}{2}+S[U]``, where the momenta field is given by `mom` and the configuration by `U`.
|
||||||
|
"""
|
||||||
function hamiltonian(mom, U, lp, gp, ymws)
|
function hamiltonian(mom, U, lp, gp, ymws)
|
||||||
@timeit "Computing Hamiltonian" begin
|
@timeit "Computing Hamiltonian" begin
|
||||||
K = CUDA.mapreduce(norm2, +, mom)/2
|
K = CUDA.mapreduce(norm2, +, mom)/2
|
||||||
|
@ -58,6 +68,11 @@ function hamiltonian(mom, U, lp, gp, ymws)
|
||||||
return K+V
|
return K+V
|
||||||
end
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace; noacc=false)
|
||||||
|
|
||||||
|
Performs a HMC step (molecular dynamics integration and accept/reject step). The configuration `U` is updated ans function returns the energy violation and if the configuration was accepted in a tuple.
|
||||||
|
"""
|
||||||
function HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}; noacc=false) where T
|
function HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}; noacc=false) where T
|
||||||
|
|
||||||
@timeit "HMC trayectory" begin
|
@timeit "HMC trayectory" begin
|
||||||
|
@ -92,6 +107,11 @@ function HMC!(U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspac
|
||||||
end
|
end
|
||||||
HMC!(U, eps, ns, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}; noacc=false) where T = HMC!(U, omf4(T, eps, ns), lp, gp, ymws; noacc=noacc)
|
HMC!(U, eps, ns, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}; noacc=false) where T = HMC!(U, omf4(T, eps, ns), lp, gp, ymws; noacc=noacc)
|
||||||
|
|
||||||
|
"""
|
||||||
|
function MD!(mom, U, int::IntrScheme, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace)
|
||||||
|
|
||||||
|
Performs the integration of a molecular dynamics trajectory starting from the momentum field `mom` and the configuration `U` according to the integrator described by `int`.
|
||||||
|
"""
|
||||||
function MD!(mom, U, int::IntrScheme{NI, T}, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) where {NI, T <: AbstractFloat}
|
function MD!(mom, U, int::IntrScheme{NI, T}, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace{T}) where {NI, T <: AbstractFloat}
|
||||||
|
|
||||||
@timeit "MD evolution" begin
|
@timeit "MD evolution" begin
|
||||||
|
|
|
@ -10,9 +10,9 @@
|
||||||
###
|
###
|
||||||
|
|
||||||
"""
|
"""
|
||||||
sfcoupling(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace) where {N,M,B,D}
|
sfcoupling(U, lp::SpaceParm, gp::GaugeParm, ymws::YMworkspace)
|
||||||
|
|
||||||
Measures the Schrodinger Functional coupling `ds/d\eta` and `d^2S/d\eta d\nu`.
|
Measures the Schrodinger Functional coupling ``{\\rm d}S/{\\rm d}\\eta`` and ``{\\rm d}^2S/{\\rm d}\\eta d\nu``.
|
||||||
"""
|
"""
|
||||||
function sfcoupling(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace) where {N,M,B,D}
|
function sfcoupling(U, lp::SpaceParm{N,M,B,D}, gp::GaugeParm, ymws::YMworkspace) where {N,M,B,D}
|
||||||
|
|
||||||
|
@ -89,7 +89,11 @@ end
|
||||||
return exp(X)
|
return exp(X)
|
||||||
end
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
function setbndfield(U, phi, lp::SpaceParm)
|
||||||
|
|
||||||
|
Sets abelian boundary fields with phases `phi[1]` and `phi[2]` to the configuration `U` at time salice ``x_0=0``.
|
||||||
|
"""
|
||||||
function setbndfield(U, phi, lp::SpaceParm{N,M,B,D}) where {N,M,B,D}
|
function setbndfield(U, phi, lp::SpaceParm{N,M,B,D}) where {N,M,B,D}
|
||||||
|
|
||||||
CUDA.@sync begin
|
CUDA.@sync begin
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue