mirror of
https://igit.ific.uv.es/alramos/latticegpu.jl.git
synced 2025-05-14 11:13:42 +02:00
Documentation for Spinors
This commit is contained in:
parent
f7f28b91c8
commit
5bd1aadfd0
7 changed files with 129 additions and 42 deletions
|
@ -9,8 +9,8 @@ makedocs(sitename="LatticeGPU", modules=[LatticeGPU], doctest=true,
|
|||
"LatticeGPU.jl" => "index.md",
|
||||
"Space-time" => "space.md",
|
||||
"Groups and algebras" => "groups.md",
|
||||
"Fields" => "fields.md"
|
||||
"Dirac" => "dirac.md"
|
||||
"Fields" => "fields.md",
|
||||
"Dirac" => "dirac.md",
|
||||
"Solvers" => "solvers.md"
|
||||
],
|
||||
],
|
||||
repo = "https://igit.ific.uv.es/alramos/latticegpu.jl")
|
||||
|
|
|
@ -28,24 +28,21 @@ Wilson-Dirac operator.
|
|||
The action of the Dirac operator `Dw!` is the following:
|
||||
|
||||
```math
|
||||
D\psi (\vec{x} = x_1,x_2,x_3,x_4) = (4 + m_0)psi(\vec{x})
|
||||
D_w\psi (\vec{x} = x_1,x_2,x_3,x_4) = (4 + m_0)\psi(\vec{x}) -
|
||||
```
|
||||
```math
|
||||
- \frac{1}{2}\sum_{\mu = 1}^4 \theta (\mu) (1-\gamma_\mu) U_\mu(\vec{x}) \psi(\vec{x} + \hat{\mu})
|
||||
```
|
||||
```math
|
||||
+ \theta^* (\mu) (1 + \gamma_\mu) U^{-1}_\mu(\vec{x} - \hat{\mu}) \psi(\vec{x} - \hat{\mu})
|
||||
- \frac{1}{2}\sum_{\mu = 1}^4 \theta (\mu) (1-\gamma_\mu) U_\mu(\vec{x}) \psi(\vec{x} + \hat{\mu}) + \theta^* (\mu) (1 + \gamma_\mu) U^{-1}_\mu(\vec{x} - \hat{\mu}) \psi(\vec{x} - \hat{\mu})
|
||||
```
|
||||
|
||||
where $$m_0$$ and $$\theta$$ are respectively the values `.m0` and `.th` of [`DiracParam`](@ref).
|
||||
Note that $$|\theta(i)|=1$$ is not built into the code, so it should be imposed explicitly.
|
||||
Note that $$|\theta(\mu)|=1$$ is not built into the code, so it should be imposed explicitly.
|
||||
|
||||
Additionally, if |`dpar.csw`| > 1.0E-10, the clover term is assumed to be stored in `ymws.csw`, which
|
||||
can be done via the [`Csw`](@ref) function. In this case we have the Sheikholeslami–Wohlert (SW) term
|
||||
can be done via the [`Csw!`](@ref) function. In this case we have the Sheikholeslami–Wohlert (SW) term
|
||||
in `Dw!`:
|
||||
|
||||
```math
|
||||
\frac{i}{2}c_{sw} \sum_{\pi = 1}^6 F^{cl}_\pi \sigma_\pi \psi(\vec{x})
|
||||
\delta D_w^{sw} = \frac{i}{2}c_{sw} \sum_{\pi = 1}^6 F^{cl}_\pi \sigma_\pi \psi(\vec{x})
|
||||
```
|
||||
where the $$\sigma$$ matrices are those described in the `Spinors` module and the index $$\pi$$ runs
|
||||
as specified in `lp.plidx`.
|
||||
|
@ -54,7 +51,7 @@ If the boudary conditions, defined in `lp`, are either `BC_SF_ORBI,D` or `BC_SF_
|
|||
improvement term
|
||||
|
||||
```math
|
||||
(c_t -1) (\delta_{x_4,a} \psi(\vec{x}) + \delta_{x_4,T-a} \psi(\vec{x}))
|
||||
\delta D_w^{SF} = (c_t -1) (\delta_{x_4,a} \psi(\vec{x}) + \delta_{x_4,T-a} \psi(\vec{x}))
|
||||
```
|
||||
is added. Since the time-slice $$t=T$$ is not stored, this accounts to modifying the second
|
||||
and last time-slice.
|
||||
|
@ -66,7 +63,7 @@ in the first time-slice is zero. To enforce this, we have the function
|
|||
SF_bndfix!
|
||||
```
|
||||
|
||||
The function [`Csw`](@ref) is used to store the clover in `dws.csw`. It is computed
|
||||
The function [`Csw!`](@ref) is used to store the clover in `dws.csw`. It is computed
|
||||
according to the expression
|
||||
|
||||
```math
|
||||
|
@ -76,9 +73,13 @@ F_{\mu,\nu} = \frac{1}{8} (Q_{\mu \nu} - Q_{\nu \mu})
|
|||
where
|
||||
```math
|
||||
Q_{\mu\nu} = U_\mu(\vec{x})U_{\nu}(x+\mu)U_{\mu}^{-1}(\vec{x}+\nu)U_{\nu}(\vec{x}) +
|
||||
+ U_{\nu}^{-1}(\vec{x}-\nu) U_\mu (\vec{x}-\nu) U_{\nu}(\vec{x} +\mu - \nu) U^{-1}_{\mu}(\vec{x}) +
|
||||
U_{\nu}^{-1}(\vec{x}-\nu) U_\mu (\vec{x}-\nu) U_{\nu}(\vec{x} +\mu - \nu) U^{-1}_{\mu}(\vec{x}) +
|
||||
```
|
||||
```math
|
||||
+ U^{-1}_{\mu}(x-\mu)U_\nu^{-1}(\vec{x} - \mu - \nu)U_\mu(\vec{x} - \mu - \nu)U_\nu^{-1}(x-\nu) +
|
||||
+ U_{\nu}(\vec{x})U_{\mu}^{-1}(\vec{x} + \nu - \mu)U^{-1}_{\nu}(\vec{x} - \mu)U_\mu(\vec{x}-\mu)
|
||||
```
|
||||
```math
|
||||
+U_{\nu}(\vec{x})U_{\mu}^{-1}(\vec{x} + \nu - \mu)U^{-1}_{\nu}(\vec{x} - \mu)U_\mu(\vec{x}-\mu)
|
||||
|
||||
```
|
||||
|
||||
|
@ -91,7 +92,8 @@ F[b,4,r] \to F_{31}(b,r) ,\quad F[b,5,r] \to F_{32}(b,r) ,\quad F[b,6,r] \to F_{
|
|||
```
|
||||
where $$(b,r)$$ labels the lattice points as explained in the module `Space`
|
||||
|
||||
The function [`pfrandomize!`](@ref), userfull for stochastic sources, is also present.
|
||||
The function [`pfrandomize!`](@ref), userfull for stochastic sources, is also present. It
|
||||
randomizes a fermion field either in all the space or in a specifit time-slice.
|
||||
|
||||
The generic interface of these functions reads
|
||||
|
||||
|
|
86
docs/src/spinors.md
Normal file
86
docs/src/spinors.md
Normal file
|
@ -0,0 +1,86 @@
|
|||
# Spinors
|
||||
|
||||
The module Spinors defines the necessary functions for the structure `Spinor{NS,G}`,
|
||||
which is a NS-tuple with values in G.
|
||||
|
||||
The functions `norm`, `norm2`, `dot`, `*`, `/`, `/`, `+`, `-`, `imm` and `mimm`,
|
||||
if defined for G, are extended to Spinor{NS,G} for general NS.
|
||||
|
||||
For the 4d case where NS = 4 there are some specific functions to implement different
|
||||
operations with the gamma matrices. The convention for these matrices is
|
||||
|
||||
|
||||
```math
|
||||
\gamma _4 = \left(
|
||||
\begin{array}{cccc}
|
||||
0 & 0 & -1 & 0\\
|
||||
0 & 0 & 0 & -1\\
|
||||
-1 & 0 & 0 & 0\\
|
||||
0 & -1 & 0 & 0\\
|
||||
\end{array}
|
||||
\right)
|
||||
\quad
|
||||
\gamma_1 = \left(
|
||||
\begin{array}{cccc}
|
||||
0 & 0 & 0 & -i\\
|
||||
0 & 0 & -i & 0\\
|
||||
0 & i & 0 & 0\\
|
||||
i & 0 & 0 & 0\\
|
||||
\end{array}
|
||||
\right)
|
||||
```
|
||||
```math
|
||||
\gamma _2 = \left(
|
||||
\begin{array}{cccc}
|
||||
0 & 0 & 0 & -1\\
|
||||
0 & 0 & 1 & 0\\
|
||||
0 & 1 & 0 & 0\\
|
||||
-1 & 0 & 0 & 0\\
|
||||
\end{array}
|
||||
\right)
|
||||
\quad
|
||||
\gamma_3 = \left(
|
||||
\begin{array}{cccc}
|
||||
0 & 0 & -i & 0\\
|
||||
0 & 0 & 0 & i\\
|
||||
i & 0 & 0 & 0\\
|
||||
0 & -i & 0 & 0\\
|
||||
\end{array}
|
||||
\right)
|
||||
```
|
||||
|
||||
|
||||
The function [`dmul`](@ref) implements the multiplication over the $$\gamma$$ matrices
|
||||
|
||||
```@docs
|
||||
dmul
|
||||
```
|
||||
|
||||
The function [`pmul`](@ref) implements the $$ (1 \pm \gamma_N) $$ proyectors. The functions
|
||||
[`gpmul`](@ref) and [`gdagpmul`](@ref) do the same and then multiply each element by `g`and
|
||||
g^-1 repectively.
|
||||
|
||||
```@docs
|
||||
pmul
|
||||
gpmul
|
||||
gdagpmul
|
||||
```
|
||||
|
||||
## Some examples
|
||||
|
||||
Here we just display some examples for these functions. We display it with `ComplexF64`
|
||||
instead of `SU3fund` or `SU2fund` for simplicity.
|
||||
|
||||
|
||||
```@setup exs
|
||||
import Pkg # hide
|
||||
Pkg.activate("/home/alberto/code/julia/LatticeGPU/") # hide
|
||||
using LatticeGPU # hide
|
||||
```
|
||||
```@repl exs
|
||||
spin = Spinor{4,Complex{Float64}}((1.0,im*0.5,2.3,0.0))
|
||||
println(spin)
|
||||
println(dmul(Gamma{4},spin))
|
||||
println(pmul(Pgamma{2,-1},spin))
|
||||
|
||||
```
|
Loading…
Add table
Add a link
Reference in a new issue