mirror of
https://igit.ific.uv.es/alramos/latticegpu.jl.git
synced 2025-05-14 11:13:42 +02:00
Added documentation fro Groups module
This commit is contained in:
parent
63ff01a2be
commit
208d03d245
11 changed files with 294 additions and 31 deletions
8
docs/make.jl
Normal file
8
docs/make.jl
Normal file
|
@ -0,0 +1,8 @@
|
|||
using Documenter
|
||||
|
||||
import Pkg
|
||||
Pkg.activate("../")
|
||||
using LatticeGPU
|
||||
|
||||
makedocs(sitename="LatticeGPU", modules=[LatticeGPU], doctest=true,
|
||||
repo = "https://igit.ific.uv.es/alramos/latticegpu.jl")
|
161
docs/src/groups.md
Normal file
161
docs/src/groups.md
Normal file
|
@ -0,0 +1,161 @@
|
|||
|
||||
# Groups and Algebras
|
||||
|
||||
The module `Groups` contain generic data types to deal with group and
|
||||
algebra elements. Group elements $$g\in SU(N)$$ are represented in
|
||||
some compact notation. For the case $$N=2$$ we use two complex numbers
|
||||
(Caley-Dickson representation, i.e. $$g=(z_1,z_2)$$ with
|
||||
$$|z_1|^2 + |z_2|^2=1$$). For the case $$N=3$$ we only store two
|
||||
rows of the $$N\times N$$ unitary matrix.
|
||||
|
||||
Group operations translate straightforwardly in matrix operations,
|
||||
except for $$SU(2)$$, where we use
|
||||
```math
|
||||
\forall g=(z_1, z_2)\in SU(2)\, \Longrightarrow\, g^{-1} =
|
||||
(\overline z_1, -z_2)
|
||||
```
|
||||
and
|
||||
```math
|
||||
\forall g=(z_1, z_2), g'=(w_1,w_2)\in SU(2)\, \Longrightarrow \, g g'= (z_1w_1 - \overline w_2 z_2, w_2z_1 + z_2\overline w_1)\,.
|
||||
```
|
||||
|
||||
Group elements can be "casted" into arrays. The abstract type
|
||||
[`GMatrix`](@ref) represent generic $$ N\\times N$$ complex arrays.
|
||||
|
||||
|
||||
Algebra elements $$X \in \mathfrak{su}(N)$$ are traceless
|
||||
anti-hermitian matrices represented trough $$N^2-1$$ real numbers
|
||||
$$X^a$$. We have
|
||||
```math
|
||||
X = \sum_{a=1}^{N^2-1} X^a T^a
|
||||
```
|
||||
where $$T^a$$ are a basis of the $$\mathfrak{su}(N)$$ algebra with
|
||||
the conventions
|
||||
```math
|
||||
(T^a)^+ = -T^a \,\qquad
|
||||
{\rm Tr}(T^aT^b) = -\frac{1}{2}\delta_{ab}\,.
|
||||
```
|
||||
|
||||
If we denote by $$\{\mathbf{e}_i\}$$ the usual ortonormal basis of
|
||||
$$\mathbb R^N$$, the $$N^2-1$$ matrices $$T^a$$ can always be written in the
|
||||
following way
|
||||
1. symmetric matrices ($$N(N-1)/2$$)
|
||||
```math
|
||||
(T^a)_{ij} = \frac{\imath}{2}(\mathbf{e}_i\otimes\mathbf{e}_j +
|
||||
\mathbf{e}_j\otimes \mathbf{e}_i)\quad (1\le i < j \le N)
|
||||
```
|
||||
1. anti-symmetric matrices ($$N(N-1)/2$$)
|
||||
```math
|
||||
(T^a)_{ij} = \frac{1}{2}(\mathbf{e}_i\otimes\mathbf{e}_j -
|
||||
\mathbf{e}_j\otimes \mathbf{e}_i)\quad (1\le i < j \le N)
|
||||
```
|
||||
1. diagonal matrices ($$N-1$$). With $$l=1,...,N-1$$ and $$a=l+N(N-1)$$
|
||||
```math
|
||||
(T^a)_{ij} = \frac{\imath}{2}\sqrt{\frac{2}{l(l+1)}}
|
||||
\left(\sum_{j=1}^l\mathbf{e}_j\otimes\mathbf{e}_j -
|
||||
l\mathbf{e}_{l+1}\otimes \mathbf{e}_{l+1}\right)
|
||||
\quad (l=1,\dots,N-1;\, a=l+N(N-1))
|
||||
```
|
||||
|
||||
For example in the case of $$\mathfrak{su}(2)$$, and denoting the Pauli
|
||||
matrices by $$\sigma^a$$ we have
|
||||
```math
|
||||
T^a = \frac{\imath}{2}\sigma^a \quad(a=1,2,3)\,,
|
||||
```
|
||||
while for $$\mathfrak{su}(3)$$ we have $$T^a=\imath \lambda^a/2$$ (with
|
||||
$$\lambda^a$$ the Gell-Mann matrices) up to a permutation.
|
||||
|
||||
|
||||
## Some examples
|
||||
|
||||
```@setup exs
|
||||
import Pkg # hide
|
||||
Pkg.activate("/home/alberto/code/julia/LatticeGPU/") # hide
|
||||
using LatticeGPU # hide
|
||||
```
|
||||
|
||||
Here we just show some example codes playing with groups and
|
||||
elements. The objective is to get an idea on how group operations
|
||||
We can generate some random group elements.
|
||||
```@repl exs
|
||||
# Generate random groups elements,
|
||||
# check they are actually from the grup
|
||||
g = rand(SU2{Float64})
|
||||
println("Are we in a group?: ", isgroup(g))
|
||||
g = rand(SU3{Float64})
|
||||
println("Are we in a group?: ", isgroup(g))
|
||||
```
|
||||
|
||||
We can also do some simple operations
|
||||
```@repl exs
|
||||
X = rand(SU3alg{Float64})
|
||||
g1 = exp(X);
|
||||
g2 = exp(X, -2.0); # e^{-2X}
|
||||
g = g1*g1*g2;
|
||||
println("Is this one? ", dev_one(g))
|
||||
```
|
||||
|
||||
## Types
|
||||
|
||||
### Groups
|
||||
|
||||
The generic interface reads
|
||||
|
||||
```@docs
|
||||
Group
|
||||
```
|
||||
|
||||
Concrete supported implementations are
|
||||
```@docs
|
||||
SU2
|
||||
SU3
|
||||
```
|
||||
|
||||
### Algebras
|
||||
|
||||
The generic interface reads
|
||||
```@docs
|
||||
Algebra
|
||||
```
|
||||
|
||||
With the following concrete implementations
|
||||
```@docs
|
||||
SU2alg
|
||||
SU3alg
|
||||
```
|
||||
|
||||
### GMatrix
|
||||
|
||||
The generic interface reads
|
||||
```@docs
|
||||
GMatrix
|
||||
```
|
||||
|
||||
With the following concrete implementations
|
||||
```@docs
|
||||
M2x2
|
||||
M3x3
|
||||
```
|
||||
|
||||
|
||||
## Generic `Group` methods
|
||||
|
||||
```@docs
|
||||
inverse
|
||||
dag
|
||||
tr
|
||||
dev_one
|
||||
unitarize
|
||||
isgroup
|
||||
projalg
|
||||
```
|
||||
|
||||
## Generic `Algebra` methods
|
||||
|
||||
```@docs
|
||||
exp
|
||||
expm
|
||||
alg2mat
|
||||
```
|
||||
|
||||
|
8
docs/src/index.md
Normal file
8
docs/src/index.md
Normal file
|
@ -0,0 +1,8 @@
|
|||
|
||||
# LatticeGPU.jl documentation
|
||||
|
||||
|
||||
```@contents
|
||||
```
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue