mirror of
https://igit.ific.uv.es/alramos/latticegpu.jl.git
synced 2025-05-15 03:33:42 +02:00
Groups SU(2) and SU(3) working for arbitrary precision
This commit is contained in:
parent
76d0b66b4b
commit
1416efdbee
2 changed files with 219 additions and 222 deletions
|
@ -16,59 +16,56 @@
|
|||
using CUDA
|
||||
|
||||
import Base.:*, Base.:+, Base.:-,Base.:/,Base.:\,Base.exp
|
||||
struct SU2 <: Group
|
||||
t1::ComplexF64
|
||||
t2::ComplexF64
|
||||
struct SU2{T} <: Group
|
||||
t1::Complex{T}
|
||||
t2::Complex{T}
|
||||
end
|
||||
SU2() = SU2(1.0, 0.0)
|
||||
inverse(b::SU2) = SU2(conj(b.t1), -b.t2)
|
||||
dag(a::SU2) = inverse(a)
|
||||
norm(a::SU2) = sqrt(abs2(a.t1) + abs2(a.t2))
|
||||
norm2(a::SU2) = abs2(a.t1) + abs2(a.t2)
|
||||
tr(g::SU2) = complex(2.0*real(g.t1), 0.0)
|
||||
SU2() = SU2{Float64}(complex(1.0), complex(0.0))
|
||||
SU2(a::T, b::T) where T <: AbstractFloat = SU2{T}(complex(a), complex(b))
|
||||
inverse(b::SU2{T}) where T <: AbstractFloat = SU2{T}(conj(b.t1), -b.t2)
|
||||
dag(a::SU2{T}) where T <: AbstractFloat = inverse(a)
|
||||
norm(a::SU2{T}) where T <: AbstractFloat = sqrt(abs2(a.t1) + abs2(a.t2))
|
||||
norm2(a::SU2{T}) where T <: AbstractFloat = abs2(a.t1) + abs2(a.t2)
|
||||
tr(g::SU2{T}) where T <: AbstractFloat = complex(2.0*real(g.t1), 0.0)
|
||||
|
||||
"""
|
||||
function normalize(a::SU2)
|
||||
|
||||
Return a normalized element of `SU(2)`
|
||||
"""
|
||||
function normalize(a::SU2)
|
||||
function normalize(a::SU2{T}) where T <: AbstractFloat
|
||||
dr = sqrt(abs2(a.t1) + abs2(a.t2))
|
||||
if (dr == 0.0)
|
||||
return SU2(0.0)
|
||||
end
|
||||
return SU2(a.t1/dr,a.t2/dr)
|
||||
return SU2{T}(a.t1/dr,a.t2/dr)
|
||||
end
|
||||
|
||||
Base.:+(a::SU2,b::SU2) = SU2(a.t1+b.t1,a.t2+b.t2)
|
||||
Base.:-(a::SU2,b::SU2) = SU2(a.t1-b.t1,a.t2-b.t2)
|
||||
Base.:*(a::SU2,b::SU2) = SU2(a.t1*b.t1-a.t2*conj(b.t2),a.t1*b.t2+a.t2*conj(b.t1))
|
||||
Base.:/(a::SU2,b::SU2) = SU2(a.t1*conj(b.t1)+a.t2*conj(b.t2),-a.t1*b.t2+a.t2*b.t1)
|
||||
Base.:\(a::SU2,b::SU2) = SU2(conj(a.t1)*b.t1+a.t2*conj(b.t2),conj(a.t1)*b.t2-a.t2*conj(b.t1))
|
||||
Base.:+(a::SU2) = SU2(a.t1,a.t2)
|
||||
Base.:-(a::SU2) = SU2(-a.t1,-a.t2)
|
||||
Base.:*(a::SU2{T},b::SU2{T}) where T <: AbstractFloat = SU2{T}(a.t1*b.t1-a.t2*conj(b.t2),a.t1*b.t2+a.t2*conj(b.t1))
|
||||
Base.:/(a::SU2{T},b::SU2{T}) where T <: AbstractFloat = SU2{T}(a.t1*conj(b.t1)+a.t2*conj(b.t2),-a.t1*b.t2+a.t2*b.t1)
|
||||
Base.:\(a::SU2{T},b::SU2{T}) where T <: AbstractFloat = SU2{T}(conj(a.t1)*b.t1+a.t2*conj(b.t2),conj(a.t1)*b.t2-a.t2*conj(b.t1))
|
||||
|
||||
struct SU2alg <: Algebra
|
||||
t1::Float64
|
||||
t2::Float64
|
||||
t3::Float64
|
||||
struct SU2alg{T} <: Algebra
|
||||
t1::T
|
||||
t2::T
|
||||
t3::T
|
||||
end
|
||||
SU2alg(x::Real) = SU2alg(x,0.0,0.0)
|
||||
SU2alg(v::Vector) = SU2alg(v[1],v[2],v[3])
|
||||
projalg(g::SU2) = SU2alg(imag(g.t1), real(g.t2), imag(g.t2))
|
||||
dot(a::SU2alg, b::SU2alg) = a.t1*b.t1 + a.t2*b.t2 + a.t3*b.t3
|
||||
norm(a::SU2alg) = sqrt(a.t1^2 + a.t2^2 + a.t3^2)
|
||||
norm2(a::SU2alg) = a.t1^2 + a.t2^2 + a.t3^2
|
||||
Base.:+(a::SU2alg) = SU2alg(a.t1,a.t2,a.t3)
|
||||
Base.:-(a::SU2alg) = SU2alg(-a.t1,-a.t2,-a.t3)
|
||||
Base.:+(a::SU2alg,b::SU2alg) = SU2alg(a.t1+b.t1,a.t2+b.t2,a.t3+b.t3)
|
||||
Base.:-(a::SU2alg,b::SU2alg) = SU2alg(a.t1-b.t1,a.t2-b.t2,a.t3-b.t3)
|
||||
SU2alg(x::T) where T <: AbstractFloat = SU2alg{T}(x,0.0,0.0)
|
||||
SU2alg(v::Vector{T}) where T <: AbstractFloat = SU2alg{T}(v[1],v[2],v[3])
|
||||
projalg(g::SU2{T}) where T <: AbstractFloat = SU2alg{T}(imag(g.t1), real(g.t2), imag(g.t2))
|
||||
dot(a::SU2alg{T}, b::SU2alg{T}) where T <: AbstractFloat = a.t1*b.t1 + a.t2*b.t2 + a.t3*b.t3
|
||||
norm(a::SU2alg{T}) where T <: AbstractFloat = sqrt(a.t1^2 + a.t2^2 + a.t3^2)
|
||||
norm2(a::SU2alg{T}) where T <: AbstractFloat = a.t1^2 + a.t2^2 + a.t3^2
|
||||
Base.:+(a::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(a.t1,a.t2,a.t3)
|
||||
Base.:-(a::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(-a.t1,-a.t2,-a.t3)
|
||||
Base.:+(a::SU2alg{T},b::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(a.t1+b.t1,a.t2+b.t2,a.t3+b.t3)
|
||||
Base.:-(a::SU2alg{T},b::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(a.t1-b.t1,a.t2-b.t2,a.t3-b.t3)
|
||||
|
||||
Base.:*(a::SU2alg,b::Number) = SU2alg(a.t1*b,a.t2*b,a.t3*b)
|
||||
Base.:*(b::Number,a::SU2alg) = SU2alg(a.t1*b,a.t2*b,a.t3*b)
|
||||
Base.:/(a::SU2alg,b::Number) = SU2alg(a.t1/b,a.t2/b,a.t3/b)
|
||||
Base.:*(a::SU2alg{T},b::Number) where T <: AbstractFloat = SU2alg{T}(a.t1*b,a.t2*b,a.t3*b)
|
||||
Base.:*(b::Number,a::SU2alg{T}) where T <: AbstractFloat = SU2alg{T}(a.t1*b,a.t2*b,a.t3*b)
|
||||
Base.:/(a::SU2alg{T},b::Number) where T <: AbstractFloat = SU2alg{T}(a.t1/b,a.t2/b,a.t3/b)
|
||||
|
||||
function isgroup(a::SU2)
|
||||
function isgroup(a::SU2{T}) where T <: AbstractFloat
|
||||
tol = 1.0E-10
|
||||
if (abs2(a.t1) + abs2(a.t2) - 1.0 < 1.0E-10)
|
||||
return true
|
||||
|
@ -82,7 +79,7 @@ end
|
|||
|
||||
Computes `exp(a)`
|
||||
"""
|
||||
function Base.exp(a::SU2alg)
|
||||
function Base.exp(a::SU2alg{T}) where T <: AbstractFloat
|
||||
|
||||
rm = sqrt( a.t1^2+a.t2^2+a.t3^2 )/2.0
|
||||
if (abs(rm) < 0.05)
|
||||
|
@ -96,10 +93,10 @@ function Base.exp(a::SU2alg)
|
|||
|
||||
t1 = complex(ca,sa*a.t1)
|
||||
t2 = complex(sa*a.t2,sa*a.t3)
|
||||
return SU2(t1,t2)
|
||||
return SU2{T}(t1,t2)
|
||||
end
|
||||
|
||||
function Base.exp(a::SU2alg, t::Number)
|
||||
function Base.exp(a::SU2alg{T}, t::T) where T <: AbstractFloat
|
||||
|
||||
rm = t*sqrt( a.t1^2+a.t2^2+a.t3^2 )/2.0
|
||||
if (abs(rm) < 0.05)
|
||||
|
@ -113,7 +110,7 @@ function Base.exp(a::SU2alg, t::Number)
|
|||
|
||||
t1 = complex(ca,sa*a.t1)
|
||||
t2 = complex(sa*a.t2,sa*a.t3)
|
||||
return SU2(t1,t2)
|
||||
return SU2{T}(t1,t2)
|
||||
end
|
||||
|
||||
|
||||
|
@ -123,7 +120,7 @@ end
|
|||
Computes `exp(a)*g`
|
||||
|
||||
"""
|
||||
function expm(g::SU2, a::SU2alg)
|
||||
function expm(g::SU2{T}, a::SU2alg{T}) where T <: AbstractFloat
|
||||
|
||||
rm = sqrt( a.t1^2+a.t2^2+a.t3^2 )/2.0
|
||||
if (abs(rm) < 0.05)
|
||||
|
@ -137,7 +134,7 @@ function expm(g::SU2, a::SU2alg)
|
|||
|
||||
t1 = complex(ca,sa*a.t1)*g.t1-complex(sa*a.t2,sa*a.t3)*conj(g.t2)
|
||||
t2 = complex(ca,sa*a.t1)*g.t2+complex(sa*a.t2,sa*a.t3)*conj(g.t1)
|
||||
return SU2(t1,t2)
|
||||
return SU2{T}(t1,t2)
|
||||
end
|
||||
|
||||
"""
|
||||
|
@ -146,7 +143,7 @@ end
|
|||
Computes `exp(t*a)*g`
|
||||
|
||||
"""
|
||||
function expm(g::SU2, a::SU2alg, t::Float64)
|
||||
function expm(g::SU2{T}, a::SU2alg{T}, t::T) where T <: AbstractFloat
|
||||
|
||||
rm = t*sqrt( a.t1^2+a.t2^2+a.t3^2 )/2.0
|
||||
if (abs(rm) < 0.05)
|
||||
|
@ -160,7 +157,7 @@ function expm(g::SU2, a::SU2alg, t::Float64)
|
|||
|
||||
t1 = complex(ca,sa*a.t1)*g.t1-complex(sa*a.t2,sa*a.t3)*conj(g.t2)
|
||||
t2 = complex(ca,sa*a.t1)*g.t2+complex(sa*a.t2,sa*a.t3)*conj(g.t1)
|
||||
return SU2(t1,t2)
|
||||
return SU2{T}(t1,t2)
|
||||
|
||||
end
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue