Added tests and support for U(1) group

This commit is contained in:
Alberto Ramos 2021-09-21 12:20:44 +02:00
parent cd6c28ff5f
commit 0587e5ffea
7 changed files with 332 additions and 1 deletions

84
src/Groups/GroupU1.jl Normal file
View file

@ -0,0 +1,84 @@
###
### "THE BEER-WARE LICENSE":
### Alberto Ramos wrote this file. As long as you retain this
### notice you can do whatever you want with this stuff. If we meet some
### day, and you think this stuff is worth it, you can buy me a beer in
### return. <alberto.ramos@cern.ch>
###
### file: GroupU1.jl
### created: Tue Sep 21 09:33:44 2021
###
using CUDA, Random
import Base.:*, Base.:+, Base.:-,Base.:/,Base.:\,Base.exp,Base.zero,Base.one
import Random.rand
struct U1{T} <: Group
t1::T
t2::T
end
U1(a::T) where T <: AbstractFloat = U1{T}(a,zero(T))
inverse(b::U1{T}) where T <: AbstractFloat = U1{T}(b.t1,-b.t2)
dag(a::U1{T}) where T <: AbstractFloat = inverse(a)
norm(a::U1{T}) where T <: AbstractFloat = sqrt(a.t1^2+a.t2^2)
norm2(a::U1{T}) where T <: AbstractFloat = a.t1^2+a.t2^2
tr(g::U1{T}) where T <: AbstractFloat = complex(a.t1)
Base.one(::Type{U1{T}}) where T <: AbstractFloat = U1{T}(one(T), zero(T))
function Random.rand(rng::AbstractRNG, ::Random.SamplerType{U1{T}}) where T <: AbstractFloat
r = randn(rng,T)
return U1{T}(CUDA.cos(r),CUDA.sin(r))
end
"""
function normalize(a::U1)
Return a normalized element of `SU(2)`
"""
function normalize(a::U1{T}) where T <: AbstractFloat
dr = norm(a)
return U1{T}(a.t1/dr, a.t2/dr)
end
Base.:*(a::U1{T},b::U1{T}) where T <: AbstractFloat = U1{T}(a.t1*b.t1-a.t2*b.t2, a.t1*b.t2+a.t2*b.t1)
Base.:/(a::U1{T},b::U1{T}) where T <: AbstractFloat = U1{T}(a.t1*b.t1+a.t2*b.t2, -a.t1*b.t2+a.t2*b.t1)
Base.:\(a::U1{T},b::U1{T}) where T <: AbstractFloat = U1{T}(a.t1*b.t1+a.t2*b.t2, a.t1*b.t2-a.t2*b.t1)
struct U1alg{T} <: Algebra
t::T
end
projalg(g::U1{T}) where T <: AbstractFloat = U1alg{T}(g.t2)
dot(a::U1alg{T}, b::U1alg{T}) where T <: AbstractFloat = a.t*b.t
norm(a::U1alg{T}) where T <: AbstractFloat = abs(a.t)
norm2(a::U1alg{T}) where T <: AbstractFloat = a.t^2
Base.zero(::Type{U1alg{T}}) where T <: AbstractFloat = U1alg{T}(zero(T))
Random.rand(rng::AbstractRNG, ::Random.SamplerType{U1alg{T}}) where T <: AbstractFloat = U1alg{T}(randn(rng,T))
Base.:+(a::U1alg{T}) where T <: AbstractFloat = U1alg{T}(a.t)
Base.:-(a::U1alg{T}) where T <: AbstractFloat = U1alg{T}(-a.t)
Base.:+(a::U1alg{T},b::U1alg{T}) where T <: AbstractFloat = U1alg{T}(a.t+b.t)
Base.:-(a::U1alg{T},b::U1alg{T}) where T <: AbstractFloat = U1alg{T}(a.t-b.t)
Base.:*(a::U1alg{T},b::Number) where T <: AbstractFloat = U1alg{T}(a.t*b)
Base.:*(b::Number,a::U1alg{T}) where T <: AbstractFloat = U1alg{T}(a.t*b)
Base.:/(a::U1alg{T},b::Number) where T <: AbstractFloat = U1alg{T}(a.t/b)
isgroup(a::U1{T}) where T <: AbstractFloat = (abs(a.t) -1.0) < 1.0E-10
"""
function Base.exp(a::U1alg, t::Number=1)
Computes `exp(a)`
"""
Base.exp(a::U1alg{T}) where T <: AbstractFloat = U1{T}(CUDA.cos(a.t), CUDA.sin(a.t))
Base.exp(a::U1alg{T}, t::T) where T <: AbstractFloat = U1{T}(CUDA.cos(t*a.t), CUDA.sin(t*a.t))
"""
function expm(g::U1, a::U1alg; t=1)
Computes `exp(a)*g`
"""
expm(g::U1{T}, a::U1alg{T}) where T <: AbstractFloat = U1{T}(CUDA.cos(a.t), CUDA.sin(a.t))*g
expm(g::U1{T}, a::U1alg{T}, t::T) where T <: AbstractFloat = U1{T}(CUDA.cos(t*a.t), CUDA.sin(t*a.t))*g
export U1, U1alg, inverse, dag, tr, projalg, expm, exp, norm, norm2, isgroup

View file

@ -23,6 +23,10 @@ export SU2, SU2alg
include("GroupSU3.jl")
export SU3, SU3alg
include("GroupU1.jl")
export U1, U1alg
export dot, expm, exp, dag, normalize, inverse, tr, projalg, norm, norm2, isgroup

View file

@ -16,7 +16,7 @@ include("Groups/Groups.jl")
using .Groups
export Group, Algebra
export SU2, SU2alg, SU3, SU3alg
export SU2, SU2alg, SU3, SU3alg, U1, U1alg
export dot, expm, exp, dag, normalize, inverse, tr, projalg, norm, norm2, isgroup
include("Space/Space.jl")

40
tests/testU1.jl Normal file
View file

@ -0,0 +1,40 @@
using LinearAlgebra, Random
import Pkg
#Pkg.activate("/lhome/ific/a/alramos/s.images/julia/workspace/LatticeGPU")
Pkg.activate("/home/alberto/code/julia/LatticeGPU")
using LatticeGPU
T = Float32
b = rand(U1{T})
println(b)
ba = rand(U1alg{T})
println("Ba: ", ba)
b = exp(ba)
println("B: ", b)
c = exp(ba, convert(T,-1))
println(typeof(norm2(ba)))
d = b*c
println("Test: ", d)
c = inverse(b)
println("Inverse B: ", c)
d = b*c
println("Test: ", d)
println("B: ", b)
println("Ba: ", ba)
b = expm(b, ba, convert(T,-1))
println("Test: ", b)
Ma = Array{U1{T}}(undef, 2)
rand!(Ma)
println(Ma)
fill!(Ma, one(eltype(Ma)))
println(Ma)

31
tests/test_SU2.jl Normal file
View file

@ -0,0 +1,31 @@
using LinearAlgebra, Random
import Pkg
#Pkg.activate("/lhome/ific/a/alramos/s.images/julia/workspace/LatticeGPU")
Pkg.activate("/home/alberto/code/julia/LatticeGPU")
using LatticeGPU
T = Float32
b = rand(SU2{T})
println(b)
ba = rand(SU2alg{T})
println("Ba: ", ba)
b = exp(ba)
println("B: ", b)
println(typeof(norm2(ba)))
c = inverse(b)
println("Inverse B: ", c)
d = b*c
println("Test: ", d)
Ma = Array{SU2{T}}(undef, 100)
rand!(Ma)
println(Ma)
fill!(Ma, one(eltype(Ma)))
println(Ma)

41
tests/test_space.jl Normal file
View file

@ -0,0 +1,41 @@
import Pkg
#Pkg.activate("/lhome/ific/a/alramos/s.images/julia/workspace/LatticeGPU")
Pkg.activate("/home/alberto/code/julia/LatticeGPU")
using LatticeGPU, BenchmarkTools
lp = SpaceParm{4}((8,12,6,6), (8,2,2,3))
function test_point(pt::NTuple{2,Int64}, lp::SpaceParm)
ok = true
println("Global point: ", global_point(pt, lp))
for id in 1:lp.ndim
ua, ub = up(pt, id, lp)
println(" - UP in id $id: ", global_point((ua,ub), lp))
da, db = dw(pt, id, lp)
println(" - DW in id $id: ", global_point((da,db), lp), "\n")
ua2, ub2, da2, db2 = updw(pt, id, lp)
ok = ok && (ua == ua2)
ok = ok && (ub == ub2)
ok = ok && (da == da2)
ok = ok && (db == db2)
end
return ok
end
global ok = true
for i in 1:lp.bsz, j in 1:lp.rsz
global ok = ok && test_point((i,j), lp)
end
if ok
println("ALL tests passed")
else
println("ERROR in test")
end
println(lp)

131
tests/test_su3.jl Normal file
View file

@ -0,0 +1,131 @@
using CUDA, LinearAlgebra
import Pkg
#Pkg.activate("/lhome/ific/a/alramos/s.images/julia/workspace/LatticeGPU")
Pkg.activate("/home/alberto/code/julia/LatticeGPU")
using LatticeGPU
function g2mat(g::SU3)
M = Array{ComplexF64, 2}(undef, 3,3)
M[1,1] = g.u11
M[1,2] = g.u12
M[1,3] = g.u13
M[2,1] = g.u21
M[2,2] = g.u22
M[2,3] = g.u23
M[3,1] = conj(g.u12*g.u23 - g.u13*g.u22)
M[3,2] = conj(g.u13*g.u21 - g.u11*g.u23)
M[3,3] = conj(g.u11*g.u22 - g.u12*g.u21)
return M
end
# 0.40284714488721746 + 0.2704272209422031im -0.029482825024553627 - 0.8247329455356851im 0.28771631112777535 + 0.027366985901323956im; -0.08478364480998268 + 0.8226014762207954im -0.4790638417896126 + 0.24301903735299646im -0.022591091614522323 + 0.16452285690920823im; 0.28083864951126214 + 0.04302898862961919im 0.0066864552013863165 - 0.17418727240313508im -0.939634663641523 + 0.07732362776719631im
T = Float64
a = rand(SU3alg{T})
println("Random algebra: ", a)
g1 = exp(a, 0.2)
g2 = exp(a, -0.2)
g = expm(g1, a, -0.2)
println(g)
M = [0.40284714488721746 + 0.2704272209422031im -0.029482825024553627 - 0.8247329455356851im 0.28771631112777535 + 0.027366985901323956im; -0.08478364480998268 + 0.8226014762207954im -0.4790638417896126 + 0.24301903735299646im -0.022591091614522323 + 0.16452285690920823im; 0.28083864951126214 + 0.04302898862961919im 0.0066864552013863165 - 0.17418727240313508im -0.939634663641523 + 0.07732362776719631im]
println(det(M))
g1 = SU3(M[1,1],M[1,2],M[1,3], M[2,1],M[2,2],M[2,3])
println("dir: ", g1)
g2 = exp(a)
println("exp: ", g2)
println("dif: ", g2mat(g1)-g2mat(g2))
g3 = g1/g2
println(g3)
println("END")
ftest(g::Group) = LatticeGPU.tr(g)
#println(" ## SU(2)")
#asu2 = SU2alg(0.23, 1.23, -0.34)
#gsu2 = exp(asu2)
#
#eps = 0.001
#h = SU2alg(eps,0.0,0.0)
#fp = ftest(exp(h)*gsu2)
#fm = ftest(exp(h,-1.0)*gsu2)
#println("Numerical derivative: ", (fp-fm)/(2.0*eps))
#h = SU2alg(0.0,eps,0.0)
#fp = ftest(exp(h)*gsu2)
#fm = ftest(exp(h,-1.0)*gsu2)
#println("Numerical derivative: ", (fp-fm)/(2.0*eps))
#h = SU2alg(0.0,0.0,eps)
#fp = ftest(exp(h)*gsu2)
#fm = ftest(exp(h,-1.0)*gsu2)
#println("Numerical derivative: ", (fp-fm)/(2.0*eps))
#println("Exact derivative: ", -projalg(gsu2))
println("\n\n ## SU(3)")
asu3 = SU3alg{T}(0.23, 1.23, -0.34, 2.34, -0.23, 0.23, -1.34, 1.34)
gsu3 = exp(asu3)
eps = 0.001
h = SU3alg{T}(eps,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
fp = ftest(exp(h)*gsu3)
fm = ftest(exp(h,-1.0)*gsu3)
println("Numerical derivative: ", (fp-fm)/(2.0*eps))
h = SU3alg{T}(0.0,eps,0.0,0.0,0.0,0.0,0.0,0.0)
fp = ftest(exp(h)*gsu3)
fm = ftest(exp(h,-1.0)*gsu3)
println("Numerical derivative: ", (fp-fm)/(2.0*eps))
h = SU3alg{T}(0.0,0.0,eps,0.0,0.0,0.0,0.0,0.0)
fp = ftest(exp(h)*gsu3)
fm = ftest(exp(h,-1.0)*gsu3)
println("Numerical derivative: ", (fp-fm)/(2.0*eps))
h = SU3alg{T}(0.0,0.0,0.0,eps,0.0,0.0,0.0,0.0)
fp = ftest(exp(h)*gsu3)
fm = ftest(exp(h,-1.0)*gsu3)
println("Numerical derivative: ", (fp-fm)/(2.0*eps))
h = SU3alg{T}(0.0,0.0,0.0,0.0,eps,0.0,0.0,0.0)
fp = ftest(exp(h)*gsu3)
fm = ftest(exp(h,-1.0)*gsu3)
println("Numerical derivative: ", (fp-fm)/(2.0*eps))
h = SU3alg{T}(0.0,0.0,0.0,0.0,0.0,eps,0.0,0.0)
fp = ftest(exp(h)*gsu3)
fm = ftest(exp(h,-1.0)*gsu3)
println("Numerical derivative: ", (fp-fm)/(2.0*eps))
h = SU3alg{T}(0.0,0.0,0.0,0.0,0.0,0.0,eps,0.0)
fp = ftest(exp(h)*gsu3)
fm = ftest(exp(h,-1.0)*gsu3)
println("Numerical derivative: ", (fp-fm)/(2.0*eps))
h = SU3alg{T}(0.0,0.0,0.0,0.0,0.0,0.0,0.0,eps)
fp = ftest(exp(h)*gsu3)
fm = ftest(exp(h,-1.0)*gsu3)
println("Numerical derivative: ", (fp-fm)/(2.0*eps))
println("Exact derivative: ", -projalg(gsu3))
println("\n # Mutiplications")
g1 = exp(SU3alg{T}(0.23, 1.23, -0.34, 2.34, -0.23, 0.23, -1.34, 1.34))
g2 = exp(SU3alg{T}(1.23, -0.23, -0.14, 0.4, -1.23, -0.8, -0.34, 0.34))
a = g1/(g2*g1)
b = g2*a
println("b is one: ", b)